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LONGEST COMMON SUBSEQUENCES 
OF TWO RANDOM SEQUENCES 

VACLAV CHVATAL AND 
DAVID SANKOFF, Universitd de Montreal 

Summary 
Given two random k-ary sequences of length n, what is f(n,k), the expected 

length of their longest common subsequence ? This problem arises in the study 
of molecular evolution. We calculate f(n,k) for all k, where n < 5, andf(n,2) 
where n < 10. We study the limiting behaviour of n- If(n,k) and derive upper 
and lower bounds on these limits for all k. Finally we estimate by Monte- 
Carlo methods f(100,k), f(1000,2) and f(5000,2). 
RANDOM SEQUENCES; COMMON SUBSEQUENCES; MATCHES 

1. Introduction 

In the study of the evolution of long molecules such as proteins or nucleic 

acids, it is common practice to try to construct a large set of correspondences, 
or matches, between two such molecules. Mathematically, this is just the problem 
of finding a longest common subsequence of two given finite sequences. A quadratic 
algorithm for doing this is available (Sankoff(1972)). It is often difficult to judge 
whether this set of correspondences is significantly large, i.e., contains more cor- 

respondences than one would expect in the case of two random molecules of the 
same length and subunit composition. Tests of significance are unavailable 

except on a Monte-Carlo basis (Sankoff and Cedergren (1973)), since nothing 
is known about the distribution of the length of the longest common subsequence. 
As a first step in the study of this distribution, this note investigates its mean 
value. 

We introduce the following notation. 
Let a = (a,, a2, ..., a), b = (b1, b2, ..., b,) be two sequences. A common sub- 

sequence, or (a, b)-match is a set M = ((ik,jk): 1 ? k ? m} with 1 < i1 < i2 < 

.". < i, n , 1 ? jl <j2 < ... <<ji, < n and a, = bj for each (i,j)eM. The 
size of a largest (a, b)-match will be denoted by v(a, b). By a k-ary sequence we 
mean one whose terms come from {1, 2, ..., k} . We shall study the function 

f(n, k) defined as the mean value of v(a, b) over all the k2n ordered pairs (a, b) 
of k-ary sequences of length n. 

Received in revised form 13 June 1974. 
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2. Exact formulae forf(n,k) with small n 

Let a = (al, a2,",9 an) and b = 
(bl, 

b2, 
."., 

b,) be two k-ary sequences. The 
pair (a, b) will be called normal if, setting anj = bj for all j, we have at = 1 and 

aj < max{a, a2,..,aj-1} + 1 (2 < j < 2n). 

Let N(n,v,t) denote the number of normal pairs (a, b) with v(a, b)= v and 

max{a1, a2, ."., a2n} = t. Clearly, the number of pairs (c, d) where c, d are k-ary 
sequences of length n with v(c, d) = v is equal to 

2n 

E N(n, v, t) 
" 
(k), 

t=1 

where (k), is the falling factorial k(k- 1) ...(k- t + 1). Hence 

1 n 2n 
f(nk) 

= 
k- 

IvI N(n, v, 
t). 

*(k)t f(nk) v= 
t=1 

n 2n t 
= v 

), 
N(n, v, t) I s(t,j)kj 

kn v= 
t=1 j=1 

2n 2n n 
S= 

Y, 
s(t,j) vN(n,v,t)kJ-2n 

j=1 t=j v=0O 

where s(t,j) are the Stirling numbers of the first kind (Riordan (1958)). Note 
that N(n, v, 2n) = 0 unless v = 0 and so 

2n-1 2n-1 n 

f(n, k)= 
- 

s(t,j) vN(n, v, t)kj- 2 
Also j=1 t=1 v=o 

N(n, v, 2n - 1) =i2 if = 1> 0 if v > 1 

and so the coefficient of f(n, k) at k-' is 

s(2n - 1, 2n - 1) vN(n, v, 2n - 1) = 
nZ. V= 1 

We have evaluated N(n, v, t) for 1 < n ? 5 and arrived at the following formulae. 

f(1,k) = k-1 

f(2, k) = 4k-1 - 5k-2 + 3k-3, 

f(3, k) = 9k-1 - 27k-2 + 60k - 71k-4 + 32k-5, 

f(4, k) = 16k-1 - 84k-2 + 380k-3 - 1146k-4 + 2085k-5 - 2018k-6 + 771k-7, 

f(5, k) = 25k-1 - 200k-2 + 1500k-3 - 8200k-4 + 30640k-s - 75096k-6 

+ 113748k-7 - 94790k-8 + 32378k-9. 
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The values of these functions for 1 ? k ? 15 are given in the table below. 

TABLE 1 

f(1, k) f(2, k) f(3, k) f(4, k) f(5, k) 

k = 1 1.000000 2.000000 3.000000 4.000000 5.000000 

2 .500000 1.125000 1.812500 2.523438 3.246094 

3 .333333 .888889 1.477366 2.090535 2.718742 

4 .250000 .734375 1.253906 1.801453 2.363899 

5 .200000 .624000 1.096640 1.594317 2.108546 

6 .166667 .541667 .977109 1.435968 1.912269 

7 .142857 .478134 .881954 1.309838 1.754954 

8 .125000 .427734 .803955 1.206201 1.625155 

9 .111111 .386831 .738692 1.119008 1.515694 

10 .100000 .353000 .683220 1.044309 1.421763 

11 .090909 .324568 .635470 .979404 1.340005 

12 .083333 .300347 .593927 .922366 1.267999 

13 .076923 .279472 .557455 .871776 1.203953 

14 .071429 .261297 .525179 .826554 1.146514 

15 .066667 .245333 .496417 .785862 1.094633 

Moreover, we have evaluated f(n, 2) for all n = 1,2, ..., 10; the results are given 
in Table 2 in proportion to iin. 

TABLE 2 

n f(n,2)/n 

1 0.500000 
2 0.562500 
3 0.604167 
4 0.630859 
5 0.649219 
6 0.663330 
7 0.674491 
8 0.683640 
9 0.691303 

10 0.697844 
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3. Limiting behaviour of f(n,k) 

Klarner and Rivest (personal communication) have observed that f(n, k) is 
superadditive with respect to n, that is, f(n1 + n2, k) > f(n1, k) + f(n2, k). Thus, 
by Fekete's theorem (Fekete (1923)), 

(1) lim n- f(n,k) = sup n-lf(n,k). 
n-+ oo n 

We shall denote the common value of (1) by Ck. Klarner and Rivest asked whether 
c, = 1; we shall show that this is not the case. 

Lemma 1. Let g(c, n, k) denote the number of pairs (a, b) of k-ary sequences 
of length n with v(a, b) > cn. If 

(ck')c(1 - c)- 
c 

~> 1 

then g(c, n, k) = o(k22n) 

Proof. Let G(c,n,k) denote the number of ordered triples (a,b,M) where 
a, b are k-ary sequences of length n and M = {(ik,Jk): 1 

' 
k ? m} is an (a, b)- 

match with m = [cnj, so that m < v(a, b). There are exactly (•n)2 ways of select- 

ing ik's and jk's with 1 i < i2 < "' < im 
n and 1 jil <2 < "' m n; 

once this is done, there are exactly k2n-m appropriate choices of (a, b). Hence 

g(c, n, k) < G(c, n, k) = n 
k2n-m 

since all pairs (a, b) counted in g(c, n, k) must have at least one (a, b)-match of 
size m. By Stirling's formula, we have 

nn 
2 

nn 
2 

)m/ 27 m(n- m) [mm(n- m)n-m 

Now, 
n 1 0(1) 

2nm(n - m) 2n c(1 - c) n n 
and 

nncn 

cn nn - cn 
n-cn 

nMmcn-m 
mm(n-m)n-m Cc(lc)1-c n - mn 

= (c(1 - c)1-c)-" O(1). 

Hence 
G(c, n, k) -~ 

k2n-e. 

O(1)* (cc(1- 
c)l-c)2n 

n 

k•" 
= o(k) n 
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which completes the proof. 
Now, for each integer k and for each x with k > 2, 0 < x < 1, set 

hk(X) = kx/2xx(1-x)1-x. 

Note that limx-,ohk(x) = 1, lim 
_I 

hk(x)= k0 and 

d xk"] - hk(X) = hk(x) 0log [Ixk+ dx 11 - x] 
Hence, for each k, there is a unique solution of 

0 < x < 1, hk() = 1. 

Denote this solution by yk. Values of Yk with 2 ? k ? 15 are shown in the fol- 

lowing table, to six-decimal accuracy. 

TABLE 3 

k Yk 

2 0.905118 
3 0.829982 
4 0.772908 
5 0.727666 
6 0.690556 
7 0.659318 
8 0.632493 
9 0.609090 

10 0.588410 
11 0.569942 
12 0.553304 
13 0.538199 
14 0.524397 
15 0.511713 

Theorem 1. If k ? 2 then ck _ 
Yk"* 

Proof. By Lemma 1, we have g(Yk, n,k) = o(k2n) and so 

f(n, k) < k(g(k, n, k)n + (k2"- g(yk, n, k))ykn) 
n nk2 

= + ko(1). 

Note that 
limkyooyk= 

0 and so limk,,, Ck = 0. 
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4. Lower bounds on ck 

For each pair (a, b) of k-ary sequences of length n, we shall construct a certain 
(a, b)-match M of size v'(a, b) and show that f'(n, k), the average of v'(a, b) over 
all k2n ordered pairs (a,b), satisfies 

(2) lim n-'f'(n, k) = 2k2/(k3 + 2k - 1). 
n -~ oo 

The construction of M is described below. The main idea is to begin by looking 
for the 'first' matching pair (as, b ) where i = 1 or j = 1. For example, suppose 
we examine the pairs (a1, b1),(a1, b2),(a2, bl),(a,, b3) and finally find the first 
matching pair, namely (a3, bl). Then we include (a3, b,) in M and proceed to 
look for the 'first' matching pair in the sequences a4, a5, 

"", 
an and b3, b4, 

""., 
b,. 

We continue until one or both sequences are exhausted. 

Step 0. Let ai = aj, fi3 = bi and S(i) = T(i) = i for all i = 1,2,***,n. Let 
FLAG = 1 and M = 0. 

Step 1. If FLAG = 1, check successively 

(Ol, fl), ((l, 9A), (L, 9A), ..., (Ll, fA), (C, fl), ... 
until a or fl is exhausted or until we find a pair with a = flj. If FLAG = -1, 
check the pairs in the order 

(Lx, Pfi), (a2, fl), (al, P2), 
.,* 

(CX, fl ),(al, fa), 
. ... In the case of exhaustion, stop; otherwise add the pair (S(i), T(j)) to M. 

Step 2. Note that i = 1 or j = 1 or both. 
If i ? 2 and j ? 2, set 

i' = i+ 1, j' = j +1. 

If i = 1 and j 3, set 

= j-1 (FLAG = 1) = 1. 

j (FLAG = -1) 
If i> 3 and j= 1, set 

i'= i+1,j' = 
i (FLAG = 1) 

fi-1 (FLAG = -1) 

Step 3. Let p = S(i') - 1, q = T(j') - 1 and redefine 

S(i) = p + i, ai = asb( 

T(j) = q +j, fi = bT(j) 
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for all i,j with 1 ? i 5 n-p, 1 < j 5 n-q. Reverse the sign of FLAG and 

go to Step 1. 

Lemma 2. For infinite sequences a* and b*, we have 

k3 + 2k - 1 
E(i' + j' - 2) = k2 

where i', j' are defined as in the preceding algorithm and E( 
.) 

denotes mathe- 
matical expectation. 

Proof. Consider the sequence of pairs in case FLAG = 1, that is, 

(19,9i),(a0 ,92),(G2,91),5... 5(L, 15d) 5 d 19 .. 
The event that any of these pairs contains equal terms has probability 1/k and 
this is also the conditional probability given any or all the preceding pairs. Hence 
the probability that the rth pair will be the first equal one is (k-1)'-l/k'. Now, 

2 if r = 
1, 

i' +j' -2 = 3 if r=2, 

r if r >3. 

Therefore 
1 k - 1 (k - 1) k3 + 2k - 1 

E(i' + j' - 2) = 2 ?- + 3 + Xr 
k k2 

I 
3 k' k2 

The same can be shown for case FLAG = -1. 

2k2 
Theorem 2. For all k, we have ck ?> k 2k-i =k3 + 2k - 1 

Proof. Obviously, it will suffice to prove (2). Let X1, X2, " be successive 

values of i' + j' - 2 found by the algorithm when applied to the infinite sequences 
a* and b*. It is clear that the Xe's are independent, identically distributed random 

variables (indeed, in each cycle, equality or inequality of pairs is independent 
of all previous cycles). Let 

2k2 
Xk = k3 + 2k - 1 

The symmetry ensured by the alternation of sign of FLAG ensures that after 

w = 2u cycles of the algorithm, the total number p (resp. q) of the a*i's (resp. 

b*j's) that have been used up satisfies 

E(p) = E(q) = ?wE(i' + j' -2) = wIxk. 
Furthermore, 

Pr 
1 

> e = Pr > 8 = o(1) 
S xk W 

L 
k 
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by the law of large numbers. Now a pair (a, b) of random sequences of length n 
can be considered as being the first n terms of a* and b*. If the algorithm (applied 
to a, b) halts during the (w + 1)th cycle then the first w cycles are the same as the 
first w cycles of the algorithm applied to a* and b*. Now, after 1i nx, 11 cycles 
of the algorithm applied to a*, b*, we have 

Pr(p > n(1 + e) or p < n(1 + e)) = Pr nP 

and so = o(1) 

Pr(n(1-e) < p ? n(1 + e) and n(1-e) ? q ? n(1 + e)) = 1-o(1). 

Hence with probability 1-o(1), at least [nxk] - ne and at most 

.nXkll 
+ ne 

cycles of the algorithm (applied to a*, b*) operate within a and b since ne succes- 
sive terms in a sequence can give rise to at most ne cycles of the algorithm. Equiv- 
alently, 

Pr( v'(a, b) - In xkj j <? n) = 1-o(1) 

and so limn-, n-lf'(n, k) = xk. 
Values of Xk with 2 < k - 15 are given in the table below. 

TABLE 4 

k xk 

2 0.727273 
3 0.562500 
4 0.450704 
5 0.373134 
6 0.317181 
7 0.275281 
8 0.242884 
9 0.217158 

10 0.196271 
11 0.178994 
12 0.164477 
13 0.152115 
14 0.141465 
15 0.132197 

5. Monte-Carlo estimates for f (100, k) and c2 

To obtain further information about Ck, we carried out two series of Monte- 
Carlo simulations. First, for n = 100 and for each k = 2, ..., 15, we generated 
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100 pairs (a, b) of random k-ary sequences and calculated v(a, b) in each case. 
We denote by 

mk,n 
the average value of n- iv(a, b) in a given sample. For large n, 

this quantity may be considered an estimate of Ck. Values of mk,100 are tabulated 
in Table 5, and may be compared with the upper and lower bounds in Tables 2 
and 4. Table 5 also contains Sk,100, where 

2= 1 (n-'v(a, b) - mk,n)2/(sample 
size - 1) 

(a,b) 
in 

sample 

is an unbiased estimator of the variance of n-Iv(a, b). 

TABLE 5 

k mk,100 Sk,100 

2 0.7814 0.0243 
3 0.6855 0.0210 
4 0.6242 0.0176 
5 0.5778 0.0211 
6 0.5332 0.0208 
7 0.5065 0.0214 
8 0.4812 0.0219 
9 0.4593 0.0211 

10 0.4423 0.0208 
11 0.4268 0.0200 
12 0.4126 0.0193 
13 0.4003 0.0212 
14 0.3827 0.0212 
15 0.3712 0.0198 

To estimate c, more closely, a second series of simulations was carried out 
for k = 2 and n = 10, 100, 1000, and 5000. Table 6 lists m2,, and s2,,, as well 
as the size of the sample used to make these estimates. 

TABLE 6 

n mk,n Sk,n sample size 

10 0.6991 0.1079 1000 
100 0.7806 0.0238 100 

1000 0.80529 0.00468 100 
5000 0.8082 0.0015 6 
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On the basis of these simulations, it seems fair to conjecture that c2 > 4/5 
and that the variance of v(a, b) is o(n2/3). 

Note added in proof 

The bounds Yk in Table 3 can be improved by a refinement of the argument in 
Lemma 1. This depends on the observation that, given a k-ary sequence a of 
length m, the number of k-ary sequences of length n > m which contain a as a 
subsequence is a function only of m, n and k, and is independent of the structure 
of a. The new upper bound Zk is the unique solution in (1/k, 1) of 

k 1-x/2(k - 1)x-lxx(1 - x)1-X = 1. 

For example, z2 = 0.866595. 
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