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Given a tree each of whose terminal vertices is associated with a given point in a
compact metric space, the problem is to optimally associate a point in this space to
each nonterminal vertex of the tree. The optimality criterion is the minimization of the
sum of the lengths, in the metric space, over all edges of the tree. This note shows how a
dynamic programming solution to this problem generalizes a number of previously
published algorithms in diverse metric spaces, each of which has direct and significant
applications to biological systematics or evolutionary theory.

Given T a tree with vertex set V(T)={X{, ..., X,, Yy, ..., ¥,,} and
edge set E(T). Let (5 d) be a compact metric space where to each ver-
tex X; € V(T) is associated a given point x; € S. The problem is to as-
sociate to each Y; € V(I) some point y; € S so as to minimize the
edge-length of T: Zy ;¢ pryd(w, z), where w, z € § are associated with
vertices W, Z € V(T). This arises in connection with the larger and gen-
erally intractable Steiner problem, in which the only information
given is the position of x4, ..., x,, € S and where both the structure of
T and the positions of the y¢, ..., ¥, € S must be determined. This type
of problem arises frequently in numerical taxonomy where the X; re-
present different organisms, the x; their positions in some space (S, d)
of characters or features, and the Y; represent hypothetical ancestral
organisms. The minimality criterion corresponds to the economy or
likelihood of the evolutionary explanation represented by the tree 7.

Here we present a dynamic programming solution for the more re-
stricted problem of finding the y;’s, given 7. Though a solution to a
full Steiner problem can always be considered to involve a tree with
vertices of degree one or three only (allowing for edges of length zero),
our method also applies in contexts where the given tree has vertices of
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higher degree. Our formulation of the problem and its solution subsumes
and generalizes a number of previously published versions, in particular
metric spaces, and these will furnish some of our examples.

It suffices to consider the case where the X; are all terminal vertices
(i.e. of degree one) of T, and the Y] are all non-terminal (degree = 3).
Other cases are ecasily reducible to this one, e.g. by decomposing T into
the subtrees coincident with any non-terminal X; and optimizing each
one separately, and by constraining y; for any Y; of degree <3 to take
on the same value as one of its neighbours.

Choose any Y,, r=1, ..., n to be the roof of the tree. Then for any
vertex Z of T, all vertices on the unique path between Z and Y,, in-
cluding Z and Y,, are said to dominate Z. The vertices dominated by
any vertex Z determine the subtree T, dominated by Z. Those vertices
VAT Zp(y) which are both dominated by Y and share an edge with Y
are said to be immediately dominated by Y.

We then construct a number of functions f, on S, one for each ver-
tex Z€ V(T). Fori=1, ..., m we sethi(x,-) =0 andel.(x) = oo if X # X}
The fy are then defined so that fy(x) is the minimal edge-length of 7y
given that Y is associated with x. From the principle of optimality it
follows that

p¥)
fy@)= min 20 [fy(z) +d(z; x)).
(zl,...,zp(y)) i=1
Then miny ¢ g fy, (x) =fyr(y;‘) is the minimal edge-length of T and the
usual backtrack process starting from Y, determines optimum locations
yiofalY,.

It might seem that in some metric spaces, this dynamic programming
approach would be of little use, due to the difficulty or impossibility of
computing the fy explicitly. However, in a diverse selection of spaces,
such as those described below, it can be shown that the fy must be cal-
culated only over small subsets of S, leading to a feasible and rapid
algorithm.

The Manhattan metric space

S =RV

s

N
d(u, v) = }El lu(J) — v,

In this space, the coordinates y{(J), ..., v,(J) may be found sepa-
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rately for each J =1, ..., N, so that it suffices to consider. S = R!. Sup-
pose Y; dominates immediately X, ..., X, where x; <...<x,. If p is
even, set g =3p — 1, and I(Y;) =[xy, x1pql. If p is odd set
q=%(p — 1) — 1,and I(Y;) = {Xy(41)}. Then fory € I(Y})

q
in(Y) =j§>0 (xp_]' - X]-+1)

and it will not be necessary to calculate fy; elsewhere. Now suppose Y;
immediately dominates Zy, ..., Z,. Let r; <..<r, be the right-hand
end-points of I(Zu(l)), s I(Zu(p)), and ;< .. < ty the left-hand end-
points of I(Zv(l)), e I(Zv(p)), where u# and v are suitable permutations
of (1, ...,p). If I(Z;) is a single point, it is listed both as a 7 and an r.
Suppose 71 < tp, Iy < lp_j, o5 Flaq < Ip_q, but the remaining 7; are all
greater than or equal to the remaining ¢;. Define

I(Yi) = [tp_q_ly rq+2]

and fory € I(Y;)

q
Jr(»)= ]z% (tp—j = 101D 4 L2y O ¥ P2,y Up-p]

p—q-2
+

j%;d T2y

The y; can then be chosen, since they will all be in the I(Y)),
i=1,..,n A version of this algorithm, specific to the case where all
non-terminal vertices have degree 3, was published by Farris [2], and is
routinely applied in the study of evolution using continuous characters.
Other results on Steiner trees in Manhattan space of dimension two are
given in [5,7].

The space of qualitative characters
S={1, ..., N}, di, ) =1ifl1+J.

The case of 3-valent non-terminal nodes was investigated by Fitch
[3], and the more general case by Hartigan [6]. Suppose Y; dominates
Xy, o, Xy If J € § occurs as frequently or more frequently than any
other K € § among x, ..., Xp, say « times,

fyl-(-])=P — Q.
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If K € S occurs « — 1 times,
fr K)=p—a+1

and it will not be necessary to calculate the remaining values of fy;. We
say J is a best value and K a next best value.

Consider a Y¥; which dominates just Zj, ..., Z,. Suppose J is a best
value most frequently among the Z, ..., Zyp, say o times. Then

fyl.(J)=p—0t

and if K is a best value only & — 1 times, then

fy(K)=p—atl

Then for each Y; it will be possible to choose y; from among the best
or next best values.

This algorithm is widely used in studying protein and DNA evolution
and has been somewhat generalized in [11].

A space of finite sequences
Let S be the set of (N — I)-ary sequences, and for a = (a(1), ..., a(r),
b= (b(1), ..., b(s)), wherer < s

A
da,b)=r+s — max 25 11+ 8(aliy), b(ix),
O<<A<y k=1
1<i; < .. <ip<r
1<]1‘< .<]}\<S

where &(u, v)=1 if u=v, and 8(u, v) =0 otherwise. This metric, re-
presenting the mutational distance between the two sequences, arises
in the study of molecular evolution as discussed by Ulam [16] and
Sellers [15]. See [17] for another interpretation of this metric. In [12]
we show that the search for yj, ..., ¥, can be reduced to a large number
(about (2r)™, where r is the length of the longest sequence among the
x; = (x; (1), ., x;(r)), =1, ..., m) of applications of the algorithm in
the simple metric space (S ={1, ..., N}, d({, J)=1 — 6(1, J)) described in
the preceding section. An application of these methods to infer the
structure of RNA in ancestral organisms is presented in [13,14].
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Euclidean space

1/2

N
S=RY,  d(u,v) =(]El () — u(J))2) .

It is, of course, in this metric space, especially the case N = 2, that
the Steiner problem is classically posed. Making use of the fact that in
a Steiner tree the ¥; must all be of degree 3 and the y; must all be vertices
of three angles of %7 radians, Melzak [9, 10] and Gilbert and Pollak [4]
have given an inductive algorithm which produces at most 2" possible
configurations for the set of n non-terminal vertices of a given tree
topology.

For arbitrary 7T, however, where the Y; may have degree >3, no non-
iterative algorithm is known. For n =1, the problem is a version of the
Weber problem, or Fermat’s problem and Kuhn [&8] has shown that a
well-known gradient-based iteration converges to the unique solution
for almost all starting approximations. This algorithm can be extended
to apply to our problem when n > 1, though proofs of convergence
would seem to be more difficult.

The dynamic programming formulation can also be employed in an
iterative manner in Buclidean space. Although not as simple as the gra-
dient method, we sketch briefly the procedure for N = 2, for the sake
of comparison with the other metric spaces we have studied.

The principle of the algorithm is to find regions R; which necessarily
contain the y/, i=1, ..., n, and to shrink these regions as much as pos-
sible in successive iterations.

(0) Divide a rectangle R containing all of the x;, i=1, ..., m, into
squares of side v/2s, and set R; =... =R, =R.

(i) For Y dominating only terminal nodes Xk], vees Xis fy and fY are
calculated just at the center point ¢ of each square as foll%ws -

14
fy(©) =j2:1 d(xg, )+ ps

14
fy(e)=25d(xy;, ¢) — ps.
f 2y dlxg

For Y immediately dominating Z,, ..., Z,,, set
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fy(c)= min E [ka(ck) +d(cy, o)1 + 2ps,

(€1, p) K

fY(c) = cmm E [ka(ck) +d(cy, )] — 2ps,
15 s Cp)
where the minima are taken over all those ¢; falling in the appropriate
R;. The functions fy and [y represent upper and lower bounds for fy
valid not only at ¢ but throughout the square of which c is the center.

(ii) All squares for which fy (c)> mmcfy (¢) could not possibly con-
tain y;, i.e., a y which minimizes fY , SO they are ignored in all further
calculatlons Offy and fY Let R, be the remaining region.

(iii) If Y; 1mmed1ately dommates Y, and a new region R has already
been dehmlted, then define R} as follows. Any square ERk with center
¢ for which

I'yk(c) + mm d(e, ¢) — 2s > min fy (¢) + maxd(e,c) + 2s]
] cERy EER]
could not contain yj;. The remainder constitute Ry. This step is re-
peated until all Y; are exhausted, /=1, ..., n.

(iv) Redefine R; to be R} fori= 1, ..., n. If all the R; are now smaller
than some critical area, stop. Otherwise divide the R; into squares of
side+/2s, where s is suitably smaller than in the present cycle, and return
to step (i).

See [1] for a biological interpretation of Steiner trees in Euclidean
space.
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