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GRAVITY MODELS AND INTERACTION PROBABILITIES * 

Luc-Normand Tellier and David Sankoff t 

1. INTRODUCTION 
Many gravity expressions have been proposed to describe human interactions 

and many theoretical justifications for them have been suggested. However, for 
various reasons, the link between gravity expressions and the probability of inter- 
action at  a distance was long neglected. In 1964, Harris [a] pointed out this defi- 
ciency of literaturein the following terms: “There is no clear statement in the litera- 
ture as to the probability density function for the distribution of interaction over 
distance, and such a probability density function is difficult or impossible to formu- 
late for this (gravity) model in its original and most widely used form.” During the 
last fifteen years, however, severa.1 authors, such as Schneider [4], Harris [2,3], and 
Choukroun [l], have used probability theory for studying gravity models. Harris 
[a] used it for reconciling the intervening opportunities theory and the traditional 
inverse-distance model. Choukroun [l I, following a similar approach, formulated a 
model based on the multinomial distribution to generate a negative exponential 
interaction function. These contributions largely pertain either to specific gravity 
hypotheses or to specific distribution functions though the macromodel proposed by 
Choukroun is of a very general nature. 

This paper attempts to provide further insight info the behavior-theoretic 
content of gravity hypotheses by focusing on the relation between gravity hypothe- 
ses and the concept of interaction probability. This is done by deriving, for all 
gravity hypotheses satisfying certain conditions, three probability functions 
expressing different aspects of the interaction phenomenon. These functions are 
(1) the interaction probabilitg density, which yields the probability that any given 
interaction will involve a distance in a specified interval, (2) the interaction decision 
function (and the associated threshold density) which gives the probability of a 
generator deciding to interact when considering an attractor at a given distance 
and (3) the density of attractor distances. These three probabilistic concepts are then 
explored in the context of the inverse-distance and negative-exponential forms of 
human gravity. 

2. INTERACTION PROBABILITIES 
We shall model a system of human interaction in terms of a probability space 

whose events can be interpreted as having two components, namely a choice of the 
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distance d over which an interaction is considered, and secondly the actual decision 
to interact or not to interact. The outcome of this decision will be denoted by 
I or -I, as the case may be. Other events in the space to be considered are of the 
form ( I ,  d 6 5 )  = I n d 6 z, (-I, d 6 x), d 6 x, d =x, etc., where z is a 
nonnegative real number. 

For any suitably differentiable probability P on this set of events, we define 
three functions on [0, w ]-the interaction density 

the interaction decision junct ion 

(2) g(z) = -d/dz[P(I I d = x)], 
and the density of attractor distances 

(3) 
Examining the conditional probability in (2), we have 

~ ( z )  = d / d x [ P ( d  6 x)]. 

(4) 

wherever this quotient exists, from which 

( 5 )  = - -P(I)~/d4f(5) /a(5)1.  
Generally, the observed deterrent effect of distance on interaction is consistent 
with a concentration of the interaction density on short distances. We make a mild 
assumption to this effect, namely that the interaction density tails off more rapidly 
than the density of attractors, or 
(6)  lin-lwca tf(z>/a(.>l = 0 
so that 

( 7 )  

Thus for fixed P ( I )  and a, any interaction density f satisfying (6) uniquely deter- 
mines the interaction decision function g and is uniquely determined by g. 

An interesting feature of (7) is the relation which it defines between three 
aspects of the interaction phenomenon, namely the observable, the behavioral, and 
the environmental aspects. The observable aspect is characterized by the inter- 
action probability density f which corresponds to the outcome of various interaction 
decisions made in the system. By contrast, the interaction decision function g 
characterizes the attitudes of decision-makers with respect to distance. It is a be- 
havioral concept in that it does not intrinsically depend on the environment of 
decision-makers. It actually determines their reaction to their environment. In this 
model, it is the density of attractor distances, a, which describes the environment 
in terms of distances between decision-makers and attractors. The density a may 
also be thought of as having a behavioral component in that it may represent, in 
practice, the density of attractors perceived by the decision-maker. 
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3. THE THRESHOLD DENSITY 

postulate P ( I  I d = 0) = 1 so that from (4) and continuity 
In studying the deterrent effect due solely to distance on interaction, we may 

(8) P ( I )  = lim,,o [a(x>/f(dl 6 1 

and 

(9) 
r- 

from (7). Under the somewhat more restrictive condition that f/a be monotone 
nonincreasing, we also have, from ( 5 ) )  that g is nonnegative and, hence, a prob- 
ability density on [O, m]. 

For this situation, an intuitively appealing interpretation of g is suggested by 
Dr. T. E. Smith. Consider two independent random variables d' and t, with densi- 
ties a and g, respectively, defined on [O, a 1. Letting P' be the joint probability func- 
tion and I' be the event that d' 6 t, it follows that for all 5 in [0, a], 

by (7 )  and ( l ) ,  so that this new model is identical to the one we have been con- 
sidering. In the new interpretation, t is a random threshold which is sampled before 
d', the random attractor distance. Whenever the attractor distance is below the 
threshold, interaction always occurs, and only then. 

The threshold concept is of interest both from the theoretical and empirical 
points of view. From a theoretical standpoint, the requirement that g be a density 
in order to be interpreted as a threshold density, can be viewed as an argument for 
requiring f/u to be monotone nonincreasing. If the threshold process is really to 
describe human behavior, then it follows that f/a must be monotone nonincreasing. 
This has another implication. It will be shown further on that, under certain condi- 
tions, it is possible to relate each interaction probability density to a specific form 
of gravity. Then the restriction imposed on flu by the adoption of a threshold 
framework leads to  rejecting all the gravity expressions for which f lu is not mono- 
tone nonincreasing. On the other hand, this notion of threshold lends itself t o  
empirical analysis. It has a concrete meaning which, from an empirical point of 
view, may make it more valuable than, for instance, the concept of utility. 

4. GRAVITY EXPRESSIONS AND THE INTERACTION DENSITIES 
The interaction model we have defined may be interpreted in terms of the 

concept of human gravity. This concept relates some measure i,, of interaction 
between points u and v in a given metric space, to the quotient of two quantities, 
the numerator related to the masses or mass densities associated with the two 
points, and the denominator an increasing function y of the distance d(u ,  v )  between 
the two points. The numerator incorporates the positive effect of increasing mass on 
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the rate or intensity of interaction, while the deterrence function, y, expresses the 
dissuading effect of distance on interaction. In concentrating on the latter, we will 
assume a uniform mass distribution over our space so that we may write 

(11) i,, = l/r[d(u, v ) l  
Since we are specifically interested in the effects of distance, we will assume 

that the density of attractor distances a is the same for all generators, and writing 
i( z) for the relative intensity or rate of interaction over a distance x ,  we arrive at 

(12) i ( z )  = a(z)/r(z). 

In our probabilistic interaction model, the corresponding density of the interaction 
probability is d/dz[P(I,  d 6 z)] which, as in (lo),  is equal to P ( I ) f ( z ) .  Thus, the 
identification of the two formulations leads to 

when i and y are expressed in appropriate units. Then from (7)  and (13), 

(14) JT,mg(y)dy = l / r ( x )  

Equations (7) and (14) clearly define the relation which exists in the model be- 
tween any deterrence function and the observable, behavioral, and environmental 
aspects of the corresponding interaction system. 

5.  THE INVERSE-DISTANCE HYPOTHESIS IN THE TWO-DIMEN- 
SIONAL CASE 
One way to study and compare gravity expressions is to find densities, f ,  g 

and a, which correspond to their deterrence functions. The traditional inverse- 
distance hypothesis in which y(x)  = x does not correspond to any density g. Hence 
it has been modified and generalized in the rational hypothesis, in which the deter- 
rence function may be written 

(15) rr,e(z) = (1  + cz)" 

where T and c are positive constants. From (14) 

(16) g r , c ( x )  = CT/(I  + c ~ ) ' + l  

for all z 3 0, and this Pareto distribution is indeed a well-defined threshold density 
such as is discussed in Section 3 above. 

In  a two-dimensional geographical model, we may consider attractors to be 
uniformly distributed in some neighborhood of the generator, so that the density, 
a ( z ) ,  of attractor distances will be proportional to the circumference of a circle of 
radius z, and hence will be proportional to the distance z itself, in this neighbor- 
hood. Then 

(17) j r . c ( z )  a r l ( 1  + ~ 2 ) "  



TELLIER AND SANKOFF : GRAVITY MODELS AND INTERACTION 321 

in this neighborhood, and condition (8) will be satisfied. The proportionality in 
(17) is interesting in that the interaction density actually increases with the dis- 
tance J,  a t  least within a restricted range of values of 2, even when T > 1. 

Note that an assumption a ( z )  rn z globally would preclude the probability 
density interpretation (3) of a, but is consistent with a probability density inter- 
pretation of f i , c  , as long as T > 2. 

6. THE NEGATIVE EXPONENTIAL HYPOTHESIS 
Consider the deterrence function 

(18) T , ( x )  = er* 

for some r > 0. From (14), 

(19) a ( s )  = re-’“ 

for all x 3 0, this being the density of the negative exponential distribution with 
parameter r. 

(20) J,.(z) a re-’’ 

in this neighborhood, which like some cases of (17), is an increasing function of z 
near zero. Again, allowing a to be the density of a nonprobability measure, such 
that a( r )  rn 2 globally, leads to  a probabilistic interpretation for f, . 
7. CONCLUSION 

The simple model that has been presented here is based on the assumption that 
the choice of the distance over which an interaction is considered and the actual 
decision to  interact or not to interact are two distinct though dependent events. This 
assumption has allowed us to  distinguish the observable, the behavioral, and the 
environmental aspects of an interaction system and to rclate these aspects to gravity 
models. This result provides a tool to  analyze and compare existing gravity hypothe- 
ses. It could also lead to the formulation of new gravity hypotheses. Finally, it 
suggests new empirical approaches to gravity models since each function that has 
been defined in relation with gravity hypotheses can be empirically determined. 
From this point of view, the behavioral nature of the threshold drnsity is of par- 
ticular interest. 

If a ( x )  a. r in a neighborhood of c = 0, then 
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