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The electrophoretic separation of protein variants having slightly different mobilities 
is a basic tool of biochemical population genetics. In certain situations it is difficult 
to determine how to classify the variants as alleles of a number of genetic loci, that 
is, as variant subsets within each of which the Mendelian laws hold. In this article, 
we develop and analyze a series of algorithms for solving various versions and 
generalizations of this problem of optimal classification. 

Electrophoretic separation of  the m variants of  a protein having slightly different 
mobilities on a starch, agarose or acrylamide gel is a basic tool of  biochemical 
populat ion genetics (Hartl,  1980, pp. 72-84). Crude tissue extracts from the n 
individuals in a sample are placed at intervals along a sample line or a series of  
slots across a rectangular gel. Under  the influence of  an electric field oriented 
perpendicular  to the sample line, the components  of  the extract including the proteins 
migrate away from this line towards the anode or cathode, depending on their 
molecular  charge. At a time depending on the mobility of  the protein of  interest, 
the field is removed and the current positions of  the variant forms in each extract 
are revealed by protein-specific staining reactions. As illustrated by the (artificial) 
data in Fig. 1, each of  the n individuals in the sample will then be characterized 
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FIG. 1. Electrophoretic patterns of six individuals for a protein with five variants. Individuals 1 and 
5 have only one band each; the others all have two. 
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by a pattern on the gel contained in a narrow region perpendicular to the sample 
line, consisting of one or more bands, at various distances from this line, each band 
indicating the presence of  some form of the protein under study. The presence of 
each variant of the protein will be reflected by the appearance of  a band at the 
same relative position in the pattern of all the individuals containing this variant. 

Thus the data produced by an electrophoretic assay are basically as in Table 1; 
an m x n matrix of  O's and l 's, indicating absence or presence of  the m variants in 
the n individuals, respectively, together with an increasing sequence of  m numbers 
measuring the distance (positive or negative) traveled from the sample line by each 
of the m variants represented by the m rows of  the matrix. 

TABLE 1 

Data abstracted from electrophoretic assay of Fig. 1 

1 2 3 4 5 6 Distances 

1 0 0 1 0 0 0 6 
2 1 0 1 0 0 1 15 
3 0 1 0 0 1 0 22 
4 0 1 0 1 0 0 34 
5 0 0 0 1 0 1 45 

In the simplest case the m variants correspond to the m alleles coded by a single 
genetic locus for an enzyme or other protein which occurs in simple monomeric 
form (i.e. is not composed of  two or more subunits). Then the Mendelian distribution 
of alleles ensures, as in the above example, that each column of the matrix contain 
either one or two l 's  and m -  1 or m -  2 O's. A column with only one 1 indicates 
an individual homozygotic for the locus, while two l 's  indicate a heterozygotic 
individual. 

More generally, several genetic loci may code the same type of protein, so that 
the m variants are not all alleles of the same locus but must be partitioned among 
L loci. For example, in a compendium of  76 enzymes used in human genetics studies, 
Harris & Hopkinson (1976, pp. 1-2) found for about 25% that L >  1. Then there 
may be between L and 2L l 's  in a column. When L is unknown and each column 
contains many l's, it is not always obvious how to partition the set of  m alleles into 
a number of  subsets within each of which the Mendelian restriction holds: that is, 
each individual manifests exactly one or two alleles from each locus. In practice 
the problem is further complicated by null or silent alleles: for various reasons it is 
possible for an individual to manifest no allele for a given locus (Harris & Hopkinson, 
1976, pp. 1-12). Various biochemical techniques may provide information about 
which alleles belong in which loci, and analysis of  family history, in human genetics, 
or genetic experiments involving cross-breeding, in botany or entomology, can 
generally resolve the issue. These are tedious and time-consuming, however, and it 
would be helpful to have an algorithm capable of suggesting a principled solution 
using the basic electrophoretic data only. 

In its most general form, this problem must be solved through an exhaustive 
search of  all possible partitions to see which, if any, best satisfy the Mendelian 
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laws. This rapidly becomes impractical as m increases. However, alleles belonging 
to the same locus tend to have similar mobilities so that the search may be appropri- 
ately constrained, permitting a much more efficient algorithm. The goal of  this paper 
is to develop such algorithms for various versions and generalizations of  the partition 
problem, allowing null alleles, but imposing constraints on intralocus mobility 
differences. The approach is that of dynamic programming for the comparison of  
sequences (Sankoff & Kruskal, 1983), although at the outset only one sequence is 
explicitly involved. 

The Basic Problem and Algorithm 

Let M be an m × n matrix of O's and l 's  and p ( 1 ) , . . . , / ~ ( m )  an increasing 
sequence of  positive real numbers. We are required to find L--- 1 and a partition of  
the integers 1 , . . . ,  m into L subsets c r l , . . . ,  o" L satisfying: 

(i) Mendelian condition: if i ,  iz and i3~ crl then for 1 <-j<- n, at least one of  M~j, 
M;2j, Mi~j is zero. 

(ii) disjoint locus mobilities: each or1 consists of  consecutive integers. 
(iii) Optimality: for some given a - 0,/3 > 0 

L L 
a Y. maxl/ .~(i ,)-g(i2)n+/3 E N(tr,) 

I=1 i t~cr t I=1 
i2*zcrt 

is minimized, where N(trt) is the number of  individuals manifesting a null allele 
for locus L 

In this formulation, the disjoint mobilities condition and a > 0 both reflect the 
idea that alleles of the same locus should have closely related mobilities. The 
parameter 13 must be positive and sufficiently large with respect to a, otherwise 
allowing null alleles would permit the trivial solution L = m. 

To illustrate, consider the (artificial) data in Table 2. Conditions (i) and (ii) permit 
bands 3, 4 and 5, bands 4, 5 and 6 or bands 5, 6 and 7 to be grouped into loci, as 
well, of  course, as any pair of consecutive bands, or any single band. As/3 increases 
from zero, the number of  loci in the solution satisfying (iii) decreases from 7 to 4 
to 3. 

TABLE 2 

Data set with alternate solutions depending on a and/3 

Solutions 

o t = l  o t = l  a = l  
i 1 2 3 4 5 6 /z /3=10 /3=1 f l=0.1  

1 1 1 0 1 0 1 15 ~ ~ } 
2 0 0 1 1 1 1 16 i J } 
3 1 0 0 1 1 0 17 "~ } 
4 1 1 1 0 1 0 18 f } 
5 0 1 0 1 0 1 25 } i } 
6 1 0 1 0 0 1 31 } 
7 0 1 1 0 1 0 32 } 
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A rapid solution to the problem is embodied in the recursion 

C ( i ) =  min [C( j )+c~( t z ( i ) - t z ( j+l ) )+f l ]Q({ j+l , . . . ,  i})] (1) 
O~j<i 

with initial condition C(0) = 0, where N(tr)  = N(o')  if o" is Mendelian and N(o-) = oo 
otherwise. The validity of  equation (1) is assured by the additive nature of the 
criterion in (iii) and the principle of optimality of  dynamic programming. 

Values of  C(i), for i = 0 , . . . ,  7 for the example in Table 2 are 0, 20, 1, 31, 12, 9, 
28 and 19 when a = 1 and/3  = 10. 

In applying this recursion to i = 1, 2 , . . . ,  m at each step values of C(j) for 0-<j < i 
have already been calculated. The computational effort at each step depends on the 
time it takes to calculate N. An efficient w. ay to do this is through the precalculation 
of  the column partial sums matrix S where Sij = ~ = 1 M k j "  Then N({i~, . . . ,  i2} ) is 
just the number of individuals j for whom Si,_l.j = S~2j and N ( { i h . . . ,  i2}) is oo or 
N ( { i b . . . ,  i2}) depending on whether or not for any individual j, S~2~ > S~,_~.j + 2. 
These checks are carded out in time proportional to n, independent of  i2-  i~. Thus 
the algorithm consisting of  applying the recursion to i =  1 , . . . ,  m requires time 
proportional to m2n. If  there is any motivation for limiting a priori the number of  
alleles per locus, the minimization in the recursion is taken over a fixed number of 
j only, so that the overall computing time becomes proportional to mn only. 

The calculation of  C does not complete the solution of the partitioning prob- 
lem, just the most difficult part of it. In addition, at each application of  the 
recursion, to calculate C(i) we must keep track of the value(s) of 
j which minimize(s) it. We do this by storing these values in a pointer 
vector P 

P(i)  = {jl0-<j < i, C(j)+ a(ix(i) - I~( j+  1)) +/3/~-({j + 1 , . . . ,  i}) 

is minimized} 

For the example in Table 2 (a  = 1,/3 = 10), the P(i)  for i = 1 , . . . ,  7 are {0}, {0}, {2}, 
{2}, {4}, {4}, {4}. Once C(m) and P(m) have been calculated, then an optimal 
partition is reconstructed by 

trL = { pt. + 1 , . . . ,  m }, for any PL ~ P(m) 

o-L_~ = {PL-I + 1 , . . . ,  PL}, for any PL-x e P(PL) 
. . . 

Alternative Treatment of Null Alleles 

The linearity of the criterion in (iii) with respect to N(trt) is convenient, but 
somewhat arbitrary. In avoiding solutions with null alleles, if it is necessary to admit 
one individual with a null allele at a given locus, it may not seem much worse to 
admit two or three. If  this treatment is preferred, N should be replaced by ! where 
I(trt) = 0 if o't has no null alleles and I(tr~) = 1 if it has one or more. It is no more 
difficult to compute I than N, and all the algorithms in this paper may make use 
of  either one. 
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Overlapping Loci 

In some cases, the disjoint locus mobility condition (ii) above may be too restrictive 
an interpretation of the fact that the alleles of  a locus have similar mobilities. We 
may want to allow two adjacent loci trl and trt-I to overlap; some of  the i ~ trt may 
be less than some of  the j ~  o-t_1, i.e. some of the /z ( i )  may be less than some of the 
/z(j). For example, in Table 2 (o~ = 1, fl = 10), two loci containing variants 1, 2 and 
4, and 3, 5, 6 and 7, respectively, satisfy (i) and the criterion in (iii) is just 18, 
compared to 19 under the disjoint locus mobilities condition (ii). Let 

V=  max { j - i +  l l i e  ~ruje o'z-l}. 

Then V---0 is just the disjoint locus mobility condition. The overlapping solution 
just presented for the data in Table 2 has V=  2 (N.B. V =  1 is impossible). To 
appropriately weaken condition (ii) we replace it by an upper bound on V, 

(ii') limited overlap: V_< V*. 
In allowing overlap, we risk finding bizarre solutions such as a number of loci 

all contained within the range of another locus, or even several loci each one nested 
in the previous one. To avoid this, we impose 

(iv) nesting prohibition: inf o-~ < i n f  try+l, sup trt < su p  crt+l 
To solve the partitioning problem under conditions (i), (ii'), (iii) and (iv), we 

calculate the following recursion for i = 3 , . . . ,  m - 1  and over all subsets X~c_ 
{ i -  W , . . . ,  i - 1 } ,  where W = m i n ( V * - l ,  i - 2 ) :  

C~) = min min [Cxj(j)  + a(Iz(i)-/z (inf Xj)) 
0 ~ j < i n f  5"i--1 ~j 

+f l f r (E j  w { j+  1 , . . . ,  i}/~,)] (2) 

with the interpretation that if X~ = 0 ,  then inf X~ = i+  1. For i =0 ,  1, 2 and m, we 
set Cx, (i) = oo unless X~ = 0 ,  with the initial condition Co(0) = 0. 

In this recursion j and i are considered candidates for sup o'~_1 and sup trl in 
some optimizing solution of  the partitioning problem. The elements in X i are less 
than j but are considered part of  trt. Similarly the elements in X~ are excluded from 
trt in preparation for their inclusion in trt+l. Condition (ii') is verified since 

max { y - x  + l[x • o't, y ~ o't-1}--<j- infEj  + 1 

= j - ( j -  V * + l ) + l  

= V * .  

Condition (iv) is verified since j < i n f  X i - 1 ,  so that at least one element in o't, 
namely j +  1, is less than all elements of Xi, and hence of ot+l. 

Along with recursion (2), pointers must be calculated and stored for each combina- 
tion of  i and Y.~, containing all the optimizing j and Ej. 
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The computation for recursion (2) requires time proportional to 4 v*-~m2.. In the 
case V* = 2, recursion (2) becomes 

min f C~(j) + ct(lz( i) - t z ( j - 1 )  ) + fllV ( { j -  l , j  + l ,  . _ . , i - 2 ,  i}) 
Cl(i) = min 

o~i<,-2 [ C o ( j ) + a ( l * ( i ) - ; z ( j + l ) ) + ~ N ( { j + l , . . . ,  i - 2 ,  i}) (3) 

min f C~(j) + ~  a ( ; , ( i )  - ; , ( j -  1)) + / 3 ~ ( { j  - 1 , j +  1, . .  }')i}) 
Co(i) man 

o~<, [ C o ( j ) + c t ( i z ( i ) - i x ( j + l ) ) + f l ] f f ( { j + l , . . .  , i 

where C~(i) is the value of  the criterion when i = sup o't and tr~ overlaps with tr~+~, 
while Co represents no overlap between these loci. Initial conditions are Co(0) = 0; 
C~(0) = C1(1) = C1(2)=oo. For the example in Table 2 when a = 1 and/3  = 10, the 
results of  applying recursion (3) are given in Table 3. The optimizing solution is 
the partition consisting of  {1, 2, 4} and {3, 5, 6, 7}. 

TABLE 3 

Results o f  applying recursion (3) to Table 2 data 

i 0 1 2 3 4 5 6 7 

Co(i) 0 20 1 31 12 9 28 18 
opt .  j - -  0 0 1 (o r  2) 2 ~ 4 4 

op t .  ~:j - -  ~ O O O ~ O {3} 

C t ( i  ) oo oo oo 12 3 19 54 oo 
opt .  j - -  - -  - -  0 0 2 3 

op t .  ~ j  - -  - -  - -  O O O O - -  

Gel Alignment 

It is sometimes necessary to simultaneously analyze two (or more) electrophoretic 
assays on different samples of  a population or on different populations. In this case 
we have two matrices M <1) and M <2) of  sizes m l x n ,  and m2xn2, respectively, 
together with corresponding distance vectors /z  (1) a n d / z  <2). We must find not only 
L (~) and L <2) and the corresponding partitions, but also an alignment of  the m~ rows 
of  M t~) with the m2 rows of M <2), i.e. a suitable set A of  pairs such that if (i~, i2) 
A and ( jb  j2) E A, then 

1 <- il <Jl  - ml and 1 --< i 2 <j2 --~ m2 
or (4) 

1 <-Jl < il --< ml and 1 -<J2 </2 - m2 

It is not necessary that all rows be aligned; e.g. for 1 -< i~ <- mx possibly no (i~, i2) 
E A, but rows from the same locus in M <~) may only be aligned with rows from a 
single locus of  M t2), and vice-versa. Then along with intra-locus distance differences 
and null alleles, we try to minimize the number of  non-aligned rows (i.e. in no pair 
in A), the number of  loci for which no row is aligned, and the I~")(i ,)- t . (=)(i2)l  
for (i,, i2) E A. 

The solution of the partitioning problem is thus to be carded out at the same 
time as a most parsimonious inference of  the genetic differences between the 
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C(ix, i2) = min 

populations (or samples) and of the differences in experimental conditions under 
which the two gels were obtained. The genetic differences are inferred to be simply 
the non-aligned alleles and/or  loci, while the experimental differences are reflected 
by the Itt")(i,)-t~m(i2)[. 

For simplicity of  notation we present a solution for the non-overlapping ease 
only, though there are no real problems in extending it for V*> 0. 

We replace (iii) by 
(iii') partition and alignment optimality: 

Let A be an alignment of  M (1) and M (2) where X loci in one gel or the other are 
non-aligned, and a further Y alleles are non-aligned in loci which themselves are 
aligned• The optimality criterion is then 

C ( ' ) + C ( 2 ) + A X + 6 Y + Y  E [~(')(i,)-~)(iz)l 
( i l , i2)~ A 

for some given constants A > 0 ,  8 > 0  and 7 > 0 ,  where C (1) and C (2) are the 
partitioning criteria for M (1) and M (2) respectively, given by (iii). 

Recursion (5) represents a solution to the partition and alignment problem under 
conditions (i), (ii) and (iii') 

min [C(j~,i2) + ot(/z")(i0 -/z(~)(j~ + 1)) 
0~j!  < i I 

+/3.K/'(')({j, + 1 , . . . ,  i})+A] 

man [C(i~,j2) + a(~(2)(i2) -/~(2)(j2+ 1)) 
O'~j2 "< i2 

+ fl/Q(2)({j + 1 , . . . ,  i}) + A] 

l min 
0~ j l  < i1' 
O~j2 < i2 

C(jx , j2)  + a(Iz °)(  iO - tz (l)(j, + 1) 

+/z(2)(i2) - ~(2)(j2 + 1)) 

+ fl (/~ro)({j~ + 1 . . . . .  i~}) 

+/~'(2)({j2+ 1 , . . . , /2}))  

+ d( j ,  + 1, . . . ,  iG j2+ 1 . . . .  , i2)  

(5) 

with initial condition C(0, 0 )=  0, and where 

I d ( j b . . . ,  i x -  1 ; j 2 , . . . ,  i2)+6 

• ] d ( j l , . . . ,  i1-1;j2, . . . ,  i2 -1)  
d ( j ~ , . . . , i l ; j 2 , . . . , i E ) = m m ]  +~,1, (1)t i ~ , (2)till 

/ I I ~  4' ',. 11 - - / "~  k 2/1 

l d ( j l , . . . ,  i l ; j 2 , . . . ,  i2-  1 )+6  

for Jt < il and J2 < i2, 
(i2 - j2 )6  + ~,[tz(')(il) -/~(2)(i2)1 

d ( i l ; j 2 , . . . ,  i2) = min. 
d(iGj2,  . .  . ,  i 2 - 1 )  + t~ 

(6) 

for J2 < i2, 
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[ d ( j , , .  . . ,  i , -  1; i2)+8 
d (Jl, • • . ,  il ; i 2 )  = min i 2 

~ ( i t - j l ) 8 +  Tit z( ) ( i , ) - ~  ( )(i2)] 

for jl  < it, and 

f 28 
d(il; i2)=min~ (1) 

[rl~ (i0-Iz(2)(i2)[ • 

We interpret d ( j l , . . . ,  i l ; j2 , . . . ,  i2) as the minimum cost of any alignment satisfy- 
ing (4) between rows j ~ , . . . ,  i~ of M (~) and J2 , . . . , / 2  of M (2), a non-aligned row 
costing 8 and two aligned rows k~ and k2 costing yJm(l)(k~)= ~c2)(k2)l. Recursion 
(6) is the standard dynamic programming solution to this type of alignment problem 
(Sankoff & Kruskal, 1983). 

In recursion (5), the partition criterion is evaluated separately for M (~) and M (2) 
whichever of the three options is chosen. The first two options involve a non-aligned 
locus, with cost A, and the third involves two aligned loci. In this alignment, each 
non-aligned row contributes 8 to the cost and each alignment pair (k~, k2) con- 
tributes Vltz")(k,)-tz(~)(k2)l, so that the criterion in (iii') is indeed optimized by 
recursion (5). 

Pointer arrays must be stored for each (i~, i2) indicating which of the three options 
in recursion (5) is (are) optimal, as well as the optimizing j~ and /or  j2- In addition 
pointers must be stored for all (j~, il,j2, is) while calculating d, so that the optimizing 
alignment may be reconstructed once C(rn~, m2) is obtained. 

2 2 Computing time for recursion (5) is proportional to m~nlm2n2. Recursion (6) 
also requires time proportional to 2 2 m ~ m2. If  the number of alleles per locus is bounded 
above, the computing times are proportional to m~nlm2n2 and rn~m2, respectively. 

There is a technique in assay methodology specifically intended to attenuate 
difficulties in aligning gels. A marker dye of rapid mobility is added to each of the 
samples before the assay. After the assay is completed, the distance between the 
sample line and the marker band is used to normalize the two or more gels to a 
common distance scale. These normalized distances are easily incorporated into 
recursions (5) and (6). 

Hardy-Weinberg Proportions 

We have seen that the solution to the partitioning problem can be highly dependent 
on the values of the parameters o~ and/3. These may be calibrated empirically by 
testing the algorithm on electrophoretic patterns where the classification of alleles 
into loci is known beforehand. Another approach is based on the Hardy-Weinberg 
proportions for alleles in a genetically stable population. If  Pl, P2 , . . . ,  P,, are the 
proportions of the m alleles of a locus in the population (counting two different 
alleles per heterozygotic individual, and the same allele twice for a homozygote), 
then the proportion of homozygotic individuals in the population tends to p2, 
p2,. 2 . . ,  p,,,  respectively, while the proportion in the population for each hetero- 
zygotic combination of allele i with allele j is 2p~v~. 
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If  there is reason to believe that the population is relatively stable genetically 
with respect to the protein under study, then the alternative solution of the partition- 
ing problem under various values of a and /3 may be evaluated for their overall 
'fit' to Hardy-Weinberg proportions using a chi-square goodness-of-fit statistic or 
log-likelihood ratios. 

Alternatively, as suggested to us by J. Felsenstein, the goodness-of-fit statistic 
itself may form part of the optimality criterion, so that instead of the criterion in 
(iii) we have (iii") 

L L L 

a Y, max [ tz ( i l ) - Iz ( i2) l+/3  ~, ]Q(txt)+~" ~ X 2 
I=1 i t ~ o "  t I=1 I=1 

i2Eo" I 

where 

x l  = E (nP~'- °')~+ E E (2np,,p,~- o,,,~y 
i~ ,  np 2 i ,~, i ~ l  2npi, pi2 1[ ] 

p , = ~  20~+ E 0., 
i '  E t r  I 

and the Oi and the Oi,~2 represent the number of homozygotes and heterozygotes 
of each type on the sample. 

Though (iii") may seem to exacerbate the profusion of parameters in these criteria, 
in fact the imposition of (ii) largely obviates the need for a non-zero a in many 
cases, and the parameter z lessens the need for precise knowledge of/3,  since 
solutions with many null alleles will generally not fit the Hardy-Weinberg laws, and 
will be disfavoured by large values of ~'. 

Recursion (1) is easily adapted to include the Hardy-Weinberg criterion 

C ( i ) =  min [ C ( j ) + a ( I z ( i ) - t z ( j + l ) ) + / 3 J Q ( { j + l , . . . ,  i}) 
0 < j < i  

+ "rx2{j + 1 , . . . ,  i}]. (7) 

The necessity of recalulating the Oi, the 0., ,  and the p~ for all i E trt for all possible 
o-~ can be computationally costly, however, proportional to m4n. 

Muitimerie Proteins 

Many types of protein are not monomeric, but are rather composed of k >  1 
subunits in association, dimers ( k = 2 )  and tetromers ( k = 4 )  being frequent. In 
assembling the subunits into an active protein, a single heterozygotic individual will 
manifest not only two kinds of homomer containing k identical subunits of one 
allelic type or the other, but also k - 1 kinds of heteromer, containing h subunits of 
one allelic type and k - h  of the other, where 1-< h < k. Thus while homozygotic 
individuals will still manifest single-band electrophoretic patterns for such loci, 
heterozygotes will generally display k+  1 equally-spaced bands. I f / z  I and /z2 are 
the positions of the homomers, then the heteromers will appear at positions/~1 + 
(1/k) (/z2 - /~ , ) , /~ ,  + (2/k)(/~2 - / z , ) , . . . , / z ,  + (k - 1/k)(/~2 - / ~ ) .  
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If  the protein being analyzed is known to be a k-mer, then the Mendelian condition 
(i) can be altered to assure exactly k +  1 bands per locus for each heterozygotic 
individual. 

(i') Mendelian heteromers: For each locus crt, and each j, where i <-j <- n, Mij  = 0 
for all i ~ cr~ (null allele), or exactly one Mij = 1 for some i ~ o'1 (homozygote), or 
else M~,j , . . . ,  Mik+,j are all equal to 1, for some i ~ , . . . ,  ik+~ ~ o'z (heterozygote). 

Then 3~r({il,...,/2}) is readily redefined so that recursion (1) satisfies conditions 
(i'), (ii) and (iii), being infinite unless for each individual j, the column partial 
sums matrix satisfies 

Si2j=Sil_l. j o r  S~2j=S~,_~.j+I or S ~ j = S ~ , _ ~ j + k + I .  

In theory, the analysis of multimeric proteins could be made more rigorous by 
evaluating in the recursion how equally spaced the heteromeric bands are in a 
heterozygotic individual. In practice, however, this requirement would tend to exceed 
the resolution of the assay method. Indeed, condition (i') as it stands is too strong 
to be realistic.--it may be more meaningful to allow 0, 1, 2 . . . .  , k + l  bands per 
locus per individual rather than 0, 1 or k + 1 only. 

One methodological reason for the difficulty in evaluating heteromeric patterns 
is that some of the bands are necessarily much less intense than others. I f  ~r~ and 
• r2 are the proportions of the two allelic subunit types produced by a heterozygote, 
then the proportion of  the two types of homomeric protein will be ~r~ and ~r~, while 
a heteromer containing h type 1 subunits and k - h  type 2 subunits will appear in 
proportion (h k) ~r~ 7r~ k-h). Thus for a heterozygotic tetramerwhere production deter- 
mined by the two alleles is balanced, ~r~ = ~r2, and the proportion of each homomer 
is less than 0-07 while the heteromer with two subunits of each type is six times 
more abundant. Thus even if the resolution of the assay permits the distinction 
between the five closely spaced bands of a heterozygotic individual, the staining 
technique may not detect the outer two (homomeric) bands. 

One approach to resolving these difficulties would be to incorporate a goodness-of- 
fit criterion in the recursion which would measure how well heterozygotic band 
patterns for multimers resemble predicted intensity profiles. Again, there is no 
essential difficulty in incorporating this into the recursion, though the utility of  such 
an algorithm might depend on methodological refinements in quantifying band 
intensities and calibrating the amount of protein in the sample. 

Discussion 

We have proposed a dynamic programming approach for resolving ambiguities 
in the assignment of alleles to loci in electrophoretic population studies. We have 
shown how this approach may be extended to a variety of related problems. It is 
true that these problems are most often encountered in practice in a form in which 
the correct solution can be guessed at without use of formal criteria. It is equally 
true, however, that protein systems in which there is a multiplicity of variants and 
ambiguity in their classification are often avoided by experimentalists precisely 
because of  these problems. Moreover, as electrophoretic methodology increases in 
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precision we may expect better resolution to lead to better separation of more 
variants, adding to the potential relevance of the techniques we describe here. In 
any case our introduction of optimization criteria and conditions on solutions 
provides a precise and coherent language for discussing desirable properties in 
electrophoretic pattern recognition. 

We have written and tested experimental computer programs which carry out 
recursions (1), (2) with V* < 3, and (5), and plan to undertake a systematic evaluation 
of the applicability of the algorithms to various types of electrophoretic data. 

We have not exhausted the topics which could be treated within this framework. 
For example, the algorithm discussed in the previous section could be used in 
deciding whether a given protein occurs in monomeric, dimeric or other form, when 
this is unknown (cf. Harris & Hopkinson, 1976, pp. 1-7). The appropriate goodness- 
of-fit criterion would presumably peak at the correct value of k when the recursion 
is repeated for k = 1, 2 , . . .  in condition (i'). Another problem involves the analysis 
of heteromers whose subunits can come from different loci. Finally, the strict 
prohibition against nesting (iv) could be relaxed somewhat to allow one level of 
nesting at most, i.e. o-~ could be nested in trt+l, but then no locus could be nested 
in o't nor could trt+l be nested in any other. 
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