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An invariant Q of a tree T under a k-state Markov model, where a generalized time parameter is
identified with the E edges of T, allows us to recognize whether data on N observed species (usually,
N DNA sequences, one from each species) can be associated with the N leaves of T in the sense of having
been generated on T rather than on any other N-leaf tree. The form of the generalized time parameter
is a positive determinant matrix in some semigroup S of Markov matrices. The invariance is with respect
to the choice of the set of E matrices in S, one associated with each of the E edges of T. The parametric
form of S represents a model of the evolutionary process. In this paper, we apply a general method
of finding invariants of a parametrized functional form to find low-degree polynomial invariants for
different models. Quadratic invariants are obtained for the Kimura two-parameter model, for a model
allowing evolutionary dependence between positions in the sequences and for an asymmetric model that
allows for A+T versus G+C asymmetries in DNA base composition. Those invariants are found for
trees (unrooted in case of the Kimura model and rooted for the others) with N=3 or N=4 terminal
vertices. We also find cubic invariants for a ten-parameter model with k=4 states, for rooted trees with
N=4. In each case, we use implicit function theory to predict the number of algebraically independent
invariants and then use this prediction to guide a systematic search for algebraic dependence within
the set of invariants produced by our method.

1. Introduction

The method of phylogenetic invariants aims to solve
the problem of evolutionary inference, for a given
semigroup S of k× k substitution matrices (k=4 in
the case of nucleic acids), by discovering, for each
possible evolutionary tree T, a function QT of the data
that can be expected to take on the value zero if and
only if these data are generated on T. Data are
presumed to be generated through the association of
some matrix in S with each edge of T. The parametric
form of S represents a model of the evolutionary
process, and each matrix in S may be considered a
generalized length for the edges (branches) of trees.
The invariance is with respect to the choice of
matrices in S associated with the edges of T; QT 0 0
whatever MXY $ S is associated with edge XY, for
each XY.

The major successes in the search for phylogenetic
invariants to data have taken advantage of specific
properties of S: Cavender & Felsenstein (1987) for
symmetric 2×2 matrices; Lake (1987) for the
two-parameter Kimura (1980) model S2K (4×4
matrices); Drolet & Sankoff (1990) for the Jukes &
Cantor (1969) model SJC in the case of k× k matrices,
ke 2; Fu & Li (1992b), Cavender (1989) and Nguyen
& Speed (1992) for classes of six-parameter 4×4
matrices; Evans & Speed (1993) and Steel et al.
(1993c) for the three-parameter Kimura (1981) model
S3K (4×4 matrices); and Székely et al. (1993) for
models that can be described by random walks on
abelian groups.

The invariants themselves are functions of the
frequencies (among the positions of aligned nucleic
acid or other k-ary sequences) of each (of the kN)
possible N-tuple of states observed at the same
sequence position at the N terminal vertices of T,† Author to whom correspondence should be addressed.
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representing the N contemporary organisms for
which the phylogeny is sought.

We have introduced a method (Ferretti & Sankoff,
1993) for finding invariants without any explicit
analysis based on specific qualities of S. In the present
paper we apply this to a number of models more
general than those previously studied, and discuss the
task of finding invariants for the ‘‘ultimate’’ model,
where S consists of all stochastic 4×4 matrices with
positive determinant.

2. The Model and the Inference Problem

We denote by T an evolutionary tree (a rooted tree
with positive lengths associated with the edges) whose
branching structure is to be found. We know only
that there must be N terminal vertices, each associated
with an observed nucleotide sequence from one
species. The N sequences are aligned and are all of
length n. It is postulated that T contains at least one
non-terminal vertex, its root, denoted r, such that the
flow of time is directed away from r on all edge on
the paths joining r to the terminal vertices. Each of
the non-terminal vertices represents a idealized
speciation event, and the edge-length =XY= corre-
sponds to the time elapsed between the speciation
(non-terminal) or observation (terminal) events
represented by vertices X and Y. We stress that the
details of T, including the branching structure
connecting its vertices as well as the edge-lengths, is
unknown. What we do know, or assume, is an
evolutionary model, namely a semigroup S of
Markov matrices, each with positive determinant, on
the state space {1, . . . , k}, where some MXY $ S is to
be associated with each edge XY of T. (In addition,
in some inference problems we assume that we know
an initial distribution (generally uniform) p on the
state space {1, . . . , k} associated with the root r,
while in the general problem p remains unknown.)

The easiest case to investigate is k=2, while k=4
is necessary to model evolution at the level of
nucleotide sequences, and k=20 for proteins.

It will be seen in the ensuing presentation that
dealing with the matrices MXY obviates any reference
to the edge-lengths =XY=, and constitutes a somewhat
more general approach. In all these models, one can
identify time with −log det M.

At each of the n aligned sequence positions
independently, we assume that the observed state at
a terminal vertex Y is drawn from {1, . . . , k}
according to the distribution

pMv0v1Mv1v2 · · · Mvr−1vr ,

where r= v0, v1, . . . , vr =Y is the sequence of
vertices on the path between r and Y. Note that
Mv0v1Mv1v2 · · · Mvr−1vr $ S. The paths from r to two
different terminal vertices Y1 and Y2 necessarily
contain some of the same non-terminal vertices
r= v0, v1, . . . , vq =X (possibly with q=0). Then the
structure of T is incorporated into the model by
assuming that the trajectories between r and Y1, and
between r and Y2, are identical between r and X.
Indeed, the sample paths of the process can be
constructed by selecting a state i0 at r from {1, . . . , k}
according to p, calculating p1 = ei0Mv0v1 for each
vertex v1 adjacent to r, selecting a state at each such
v1 according to the probability distribution p1, and if
v1 is a non-terminal vertex, calculating p2 for each v2

adjacent to v1 (except v0), and so on.
The n sequence positions are assumed for present

purposes to represent n independent samples of the
same process. For each position, the only part of the
sample path we can observe is the N-tuple
representing its states at the N terminal vertices of T.
The observed frequencies of all possible N-tuples—
the observed spectrum of the process—become the
basic data for phylogenetic inference.

The invariants approach, introduced by Cavender
& Felsenstein (1987) and Lake (1987, 1988), focuses
on estimating the branching structure of T and not
the associated edge lengths. More precisely, it does
not try to reconstruct the details of the matrices
associated with each edge. This limited goal is
motivated largely by the interest of the biologist
primarily in the branching order of the phylogenetic
tree, for example whether X and Y are more closely
related to each other than either is to Z, and only
secondarily in the details of how much time has
elapsed between the divergence of Z and the split of
X from Y. Another major motivation of this
approach is the prohibitive computational expense of
a full maximum likelihood estimation of T and its
edge lengths (Felsenstein, 1991).

The idea is to find a function QT of the data (the
spectrum) and of tree topology T that is predicted—in
terms of the process hypothesized to have generated
the data—to be invariant (e.g. identically equal to zero)
with respect to the choice of M $ S (generalized length)
associated with each edge in the correct tree, but to be
sensitive to this choice (and generally to be remote
from the invariant value) for all other trees U, V, . . . .
Then by evaluating the functions QT, QU, QV, etc on
an observed spectrum, only one should take on (or, for
finite n, be close to) the predicted invariant value,
namely the function associated with the tree that
generated the spectrum, so that this tree can thus be
identified and the phylogeny correctly inferred.
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3. The Nature and Number of Invariants

For a given tree T and a given evolutionary model
represented by the semigroup S, how many invariants
are there? Are invariants necessarily polynomial? If
there are m invariants, can a set of m algebraically
independent invariants be constructed only of
polynomials? These questions remain open in general,
though partial answers are available. To date,
whenever a set of m invariants have been found for a
model, these have been only linear, quadratic and
other polynomial invariants.

Felsenstein (1991) suggested, by counting par-
ameters, that the number of invariants should be equal
to kN − hE, where kN is the number of frequencies fi

making up the spectrum f, and hE is the number of
parameters in the k× k evolutionary model generat-
ing these frequencies, h being the number of
parameters in each matrix, 1E hE k(k−1), and E
the number of edges in the tree T†. Intuitively, we
should terms of the other hE frequencies by
eliminating the parameters from the hE of the
equations relating the frequencies to the parameters.
The kN − hE ‘‘solutions’’ would be the invariants.

Formalizing these ideas, the number of invariants
in the neighbourhood of a point in parameter space
should be kN −rank(D), where the D is the matrix of
partial derivatives of the frequencies with respect to
the parameters. Thus, in certain trees containing
vertices of valence 2, it can be shown that
rank(D)Q hE, so that the intuitive analysis is mis-
leading. Note that the calculation of the rank can be

difficult, and that a closed form expression for it valid
over the parameter space is not available. In addition,
general theory does not assure us that the invariants
in one neighbourhood are the same as those in
another, even if rank(D) is the same. If we knew that
all invariants were polynomials, answers to these
questions could be cleared up.

3. Previous Work

A variety of semigroups S have been studied, each
representing some compromise between the biological

reality they are supposed to model and the
mathematical feasibility of solving the inference
problem. The invariants associated with these models
have been discovered using very diverse approaches
and are all polynomial functions of the kN

components of the expected spectrum f.
The simplest (and hence the least realistic) of the

models is that of Jukes & Cantor (1969) generalized
to k states, where the k× k substitution matrices form
a semigroup SJC and have form

MXY =
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where 0Q aQ 1− (k−1)a. When k=4, SJC is
the original Jukes & Cantor (1969) model. For a fixed
k, the parameter a completely determines the
matrix. Setting t=−log(1− ka), the parameter t
may be identified with edge length in the sense
that at over any path v0, v1, . . . , vr in the tree is
equal to the parameter t derived from the
matrix Mv0v1Mv1v2 · · · Mvr−1vr . Also −log det M=
t(k−1).

A more realistic, three-parameter model for k=4
was proposed by Kimura (1981). We denote this S3K.
Its matrices have form:

where aq b and aq c. Matrices of this form
satisfying the additional constraint b= c make up the
Kimura (1980) two-parameter model S2K. Another
notable model for k=4 was proposed by Cavender
(1989) in the context of invariant analysis. The
matrices in this model, denoted SCAV, have six inde-
pendent parameters and are generally asymmetric:
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where a+ b= c+ d and s+ r= p+ q. SCAV is a
particular case of the model considered by Nguyen &

† For simplicity we assume that the initial distribution is known;
otherwise we simply add k−1 to the number of model parameters
in the following analysis.
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Speed (1992) where the semigroup SNS is the set of
matrices of form

where a and b are constants.
Table 1 summarizes the principal results obtained

to date. It indicates, for each reference, the number of
invariants, and their polynomial degrees, found in
various contexts characterized by N, k, p, T and S.

Some existence results are also available. Cavender
(1991) and Fu & Li (1992a) independently established
necessary and sufficient conditions on S for the
existence of linear invariants. Fu & Li (1991) have
also obtained this kind of result for the existence of
certain types of quadratic invariants.

4. Method

4.1.    

We denote by f=(f1, . . . , fw ) the probability
distribution of w= kN N-tuples for a given rooted tree
T, a given root distribution p, and a given set of
matrices M= {M1, . . . , M2N−2} from S associated
with the 2N−2 edges of T. We wish to find all
invariants Q having a specific parametric form

Q=Q(f, l), (1)

T 1
Summary of invariant literature

Model Invariant

Citation N k T p S d Methodology

Lakes (1987) 4 4 −R U S2K 1 Heuristic
Cavender & Independence;
Felsenstein 4 2 −R U SJC 2 four-point metric
(1987)
Felsenstein 3, 4 4 −R & U SJC 3 Heuristic
(1991)
Drolet & 4 e2 −R U SJC 2 Independence;
Sankoff (1990) four-point metric
Sankoff (1990) q2 e2 −R U Symmetric e2 Independence
Cavender 4 4 R A SCAV 1 Vectorial analysis;
(1989) numerical method
Nguyen & e2 4 R A SNS 1 Vectorial analysis
Speed (1992)
Ferretti & 4 e2 −R U SJC 1, 2 Empirical
Sankoff (1993)
Fu & Li (1992b) q2 4 A A SCAV 1 Analytical method
Steel et q2 e2 R A =M=$ 0, 21 q2 Four-point metric
al. (1993b)
Steel et al. Random walk
(1993c) q2 4 R A S3K e2 on abelian group;

Fourier analysis
Evans & Speed Random walk
(1993) q2 4 R A S3K e1 on abelian group;

Fourier analysis
Ferretti & 3, 4 2, 4 R C M Empirical
Sankoff (1994) asymmetric 1, 2
This paper 4 2 R C S2K 2 Empirical
This paper 4 4 R A 10-param. 3 Empirical

N: number of terminals on tree.
k: size of state space.
T: rooted (R), Unrooted (−R) or Arbitrary (A).
S: semigroup.
p: root distribution: Uniform (U), Arbitrary (A) or Constrained (C).
d: degree of polynomial.
Independence: independence of events in disjoint paths in T.
Four-point metric: property of lengths (like −det M) in ‘‘additive’’ tree structures.
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where l represents a vector of parameters. The
problem becomes that of determining all l for which
the function Q is invariant over all M and all p, i.e.
identically equal to zero, independent of the specific
parameters associated with each of the edges and the
root.

Since Q is to be invariant with respect to the
parameters of the model, we simply choose m sets p(i)
of root distributions and m sets M(i) of matrices,
1E iEm, for T at random, calculate explicitly
the distribution f(i) for each set, and set up the system:

Q(f(1), l)=0

· · ·

Q(f(m), l)=0. (2)

The set of invariants having of form Q is necessarily
contained in the set of non-trivial solutions of this
sytem.

Consider the important case of quadratic invari-
ants. The function Q in (1) is of form

Q(f, l)= s
1E iE jEw

lij fi fj , (3)

and then the equations in (2) can be written as a
system of homogeneous linear equations in the
unknown lij

G · l= 0,

where G is a m× v matrix, v=w(w+1)/2, with
elements

ghn = fi (h)fj (h),

lij being the n-th component of l. The set of solutions
to G · l= 0 defines the kernel of the matrix G,
denoted ker(G). This is a vector subspace of
dimension equal to v−rank(G) for which the
simplest basis is a set of vectors expressing the linear
dependences existing among the columns of G.

The key to the choice of m, p and M is to ensure
that there are no extra solutions to G · l= 0 owing
to accidental dependences among its columns. This
can be ensured by making m as large as feasible so
that any accident must be an extremely improbable
multiple coincidence, and by choosing random
positive parameters, so that the set of such accidents
has measure zero. In practice, of course, with
pseudo-random generators this cannot be assured,
but this is of no mathematical importance since
spurious invariants are, as we shall see, easily detected
and discarded. As we shall also see, however, it is of
practical importance to keep the number of candidate
invariants as small as possible.

Since G is a real matrix, the precise solution of
G · l= 0, and of the larger problems of this sort we
encounter with our method, becomes computation-
ally cumbersome. It is easier to embed G · l= 0 in a
multiple regression problem

G · l= 0+ e,

where each row of G is an observation of the v
independent regressor variables and 0 contains the
values (all zero) of the dependent variable. We can
then be sure that our estimate of l has good
properties. Given that the key quantity in this
problem is rank(G), it is not necessary to take mq v.

4.2.   

Suppose that we obtain the set {Q1, . . . , Qp} of
quadratic invariants as linear basis for Ker(G), the
solutions subspace of system (2) for a given model.
By definition, the polynomials Q1, . . . , Qp are linearly
independent, i.e. for any quadratic equation of
form

s
p

i=1

AiQi =0,

it must be that Ai =0, for all i, 1E iE p, and for all
probability distributions f=(f1, . . . , fw ). Our goal,
however, is to find the smallest set of invariants which
algebraically spans the set of all invariants. A linearly
independent set of invariants could still contain
algebraically functionally dependent elements which,
ideally, we would like to exclude. For example, does
{Q1, . . . , Qp} contain elements which are cubically
related? In other words, are there coefficients Aij such
that

s
w

i=1

s
p

j=1

Aij fiQj =0? (4)

This question may also be investigated ‘‘empirically’’.
We evaluate for r randomly generated probability
distributions f(h), 1E hE r (not necessarily spectra
since they are not generated by any process over a
fixed tree), the p×w quantities fi (h)Qj (f(h)). The
p×w terms derived from each probability distri-
bution form one of the r rows of a matrix H (we may
take r= p×w). Then Ker(H) represents the set of
dependences of form (4) among the polynomials
Q1, . . . , Qp .

We may go a step further and find in the same way
quartic or higher degree algebraic relations between
Q1, . . . , Qp . However, as we shall see, there is a
computational limit to this kind of investigation,
owing to the rapid growth of the size of matrix H as
the degree of the relation increases.
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5. Three Applications

5.1.    2

We now apply our method to find all quadratic
invariants for tree T1 in Fig. 1 for the model S2K
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with the uniform root distribution p=(1/4, 1/4, 1/
4, 1/4). There are thus ten unknown parameters in this
inference problem, namely two for each edge. We
write f(q) for the probability of observing the
four-tuple q=(q1, q2, q3, q4) at a given position. We
have

f(q)= s
4

i=1

s
4

j=1

MEF (i, j)MEA (i, q1)

×MEB (i, q2)MFC ( j, q3)MFD ( j, q4). (6)

Given q, we define the four-tuple
s(q)= (s1, s2, s3, s4) recursively as follows: set s1 =1
and, given s1, . . . , sj , 1E jE 3,

sj+1 = sj ' if there exists j'E j such that qj ' = qj+1

otherwise,

sj+1 =2 if the substitution (q1, qj+1) is a transition

=3 if (q1, qj+1) is a transversion

and sj ' $ 3, 1E j 5E j

=4 if (q1, qj+1) is a transversion and

if \j'E j such that sj ' = 3.

For example, s((3, 4, 2, 2))= (1, 2, 3, 3),
s((2, 4, 3, 1))= (1, 3, 4, 2), and so on. By the sym-
metries in the model, one has that f(q)= f(q') if and
only if s(q)= s(q'). Then, it will be simpler to treat
only one representative from each of the 36 classes in
the partition induced by this equality, which we
denote as follow:

f1 =S(1, 1, 1, 1) f19 =S(1, 2, 1, 3)

f2 =S(1, 1, 1, 2) f20 =S(1, 3, 1, 2)

f3 =S(1, 1, 1, 3) f21 =S(1, 3, 1, 4)

f4 =S(1, 1, 2, 1) f22 =S(1, 2, 3, 1)

f5 =S(1, 1, 3, 1) f23 =S(1, 3, 2, 1)

f6 =S(1, 1, 2, 2) f24 =S(1, 3, 4, 1)

f7 =S(1, 1, 3, 3) f25 =S(1, 2, 3, 3)

f8 =S(1, 2, 1, 1) f26 =S(1, 3, 2, 2)

f9 =S(1, 3, 1, 1) f27 =S(1, 3, 4, 4)

f10 =S(1, 2, 1, 2) f28 =S(1, 2, 3, 2)

f11 =S(1, 3, 1, 3) f29 =S(1, 3, 2, 3)

f12 =S(1, 2, 2, 1) f30 =S(1, 3, 4, 3)

f13 =S(1, 3, 3, 1) f31 =S(1, 2, 2, 3)

f14 =S(1, 2, 2, 2) f32 =S(1, 3, 3, 2)

f15 =S(1, 3, 3, 3) f33 =S(1, 3, 3, 4)

f16 =S(1, 1, 2, 3) f34 =S(1, 2, 3, 4)

f17 =S(1, 1, 3, 2) f35 =S(1, 3, 2, 4)

f18 =S(1, 1, 3, 4) f36 =S(1, 3, 4, 2), (7)

where

S(s1, s2, s3, s4)= s
q: s(q)= (s1,s2,s3,s4)

f(q).

Note that a36
i=1 fi =1.

With this notation, the problem is then to
determinate all the invariants of the form (3) with
w=36. We first construct the matrix G. To do this
we randomly choose m= v=666 points
p(1), . . . , p(666) in ten-
dimensional space to be the parameters in the various
M. We can then accurately calculate the 36fj for each
of the 666 spectra f(1), . . . , f(666). Using all of these
values we can construct the 666×666 matrix G. The
set of quadratic invariants must be in ker(G).

5.1.2. Results

We find that rank(G)=541 so that the canonical
basis of ker(G) contains 125 elements. Among these
invariants, 53 can be factored as fiL1 or fiL2, for some
i, 1E iE 36, where L1 and L2 are linear combinations
of the fi . As a by-product, then, we have found the
set of linear invariants for S2K. L1 and L2 are none
other than the two invariants discovered by Lake
(1987), namely

L1 = f21 + f29 − f11 − f35

L2 = f24 + f32 − f13 − f36.

Another 18 of the 125 invariants can be discarded as
being of the form fiLj +Q, where Q is itself aF. 1. The three unrooted binary trees on four species.
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quadratic invariant. Thus there remain 54 quadratic
invariants, which we denote Q1, . . . , Q54, and which
are given in Appendix A.

Applying the arguments about the number of
invariants at the end of Section 2, with h=2 and p

given, we know that there must exist 256−10=246
independent invariants for this model. But 220 of
these invariants are simply the symmetric relations
summarized in (7), and we have in addition the trivial
invariant a f=1. There must then be at least
56− (246−220−1)=31 algebraic relations among
the invariants L1, L2, Q1, . . . , Q54 and we can apply
the method of Section 4.2 to find all the cubic
relations (4) among Q1, . . . , Q54. In this case, p=54
and w=36, and we must then find the kernel of a
matrix H of dimension 1944×1944.

We find 23 relations of form (4) (see equations in
Appendix B) which allow us to eliminate the
invariants Q32, Q33, . . . , Q54. There are no more cubic
relations among the invariants Q1, . . . , Q31, but there
may be among L1, L2, Q1, . . . , Q31. That is, there
may be coefficients Aij , Bij and Cij , not all zero, such
that

s
iE j $ [1, 36]

Aij fi fjL1 + s
iE j $ [1, 36]

Bij fi fjL2

+ s
i $ [1, 36],j $ [1, 31]

Cij fiQj =0. (8)

Our method would require, in this case, a matrix H

of dimension 2448×2448. It can be seen that the
search for dependencies (8) as well as those of higher
order, e.g. quartic, is limited by the computational
size of the problem. For the moment then, we remain
with 33−25=8 invariants too many.

The fact that our l are, strictly speaking, only
estimated by the computer program on the basis of a
(pseudo)-random sample might seem to relegate to
the realm conjecture the invariant status of the forms
in (A.1) in Appendix A. This is not the case, however.
Substituting (5) and (6) into (A.1) proves explicitly
that the forms are all invariant. That this latter
calculation is impractical in many cases without the
use of symbolic computing does not detract from the
certainty of the result.

The quadratic forms Q1, . . . , Q31 are not only
invariants, but are true phylogenetic invariants in that
they are non-zero for spectra f calculated according
to the topologies of trees T2 or T3 in Fig. 1, and
indeed vary with the edge matrix parameters
associated with these trees. The linear forms L1 and
L2, however, are each invariant for two of the three
trees and variable with the edge matrix parameters of
the third one.

5.2.      

  

The hypothesis of independent evolution of the
values at different positions of a sequence is not really
necessary in our search for invariants because our
spectra f consist of expected frequencies at one position
and estimations of f by averaging over positions is not
affected by dependence, since summation and expec-
tation commute. However, non-independence may
severely interfere with the convergence of the observed
spectra to the expected value. Moreover, non-indepen-
dence is widespread, since positions that are close
together in either primary or secondary structure may
co-evolve. In this section, we investigate a simple
model of evolution that incorporates a degree of
non-independence between pairs (e.g. adjacent pairs)
of positions. Steel et al. (1993c) have also proposed
non-linear invariants for evolutionary models where
the positions do not correspond to independent
identically distributed (i.i.d.) random variables

We first divide the N aligned sequences of length n
into n/2 pairs of positions, and define our semigroup
S of k2 × k2 matrices on the state space
{1, . . . , k}× {1, . . . , k}. We can then obtain spectra
f on pairs of positions, and apply our method to obtain
polynomial invariants. The assumption that the
observed N-tuples are produced by i.i.d. random
variables at each of n positions no longer holds, but is
bequeathed to the n/2 pairs instead. Note that the
positions constituting each pair are not necessarily
adjacent in the sequence, which allows us to model,
say, secondary structure constraints.

In the simplest case, the original state space is {1, 2}.
Each pair of positions can then take on the following
values: 11, 22, 12, 21, which we renumber as 1, 2, 3, 4,
respectively. Because of the symmetry between states 1
and 2 and between states 3 and 4, it seems appropriate
to use the S2K model where 1t2 and 3t4 are
‘‘transitions’’ (rare in this context) and the other
substitutions are ‘‘transversions’’. The root distribution
is p where p(1)= p(2) and p(3)= p(4), which is
consistent, for example, with random binary sequences.

We will first look for quadratic invariants for the
tree T1 on the three species A, B and C in Fig. 2. Given
the symmetries in S and in p, we classify the
components of the spectrum f as follows:

f1 = f(1, 1, 1)+ f(2, 2, 2)

f2 = f(1, 1, 3)+ f(2, 2, 3)+ f(1, 1, 4)+ f(2, 2, 4)

f3 = f(1, 1, 2)+ f(2, 2, 1)

f4 = f(1, 3, 1)+ f(2, 3, 2)+ f(1, 4, 1)+ f(2, 4, 2)

f5 = f(1, 3, 3)+ f(1, 4, 4)+ f(2, 3, 3)+ f(2, 4, 4)
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F. 2. The four rooted trees on three terminal vertices.

Q6 = f4 f5 − f4 f6 − f5 f7 + f6 f7 − f11 f12

+f11 f13 + f12 f14 − f13 f14

Q7 =−f2 f4 +2f3 f5 +2f1 f6 − f2 f7 + f12 f15

+f13 f15 −2f14 f16 −2f11 f17

Q8 =2f6 f8 − f4 f9 − f7 f9 +2f5 f10 + f12 f18

+f13 f18 −2f14 f19 −2f11 f20

Q9 =−f2 f8 + f1 f9 + f3 f9 − f2 f10 − f16 f18

−f17 f18 + f15 f19 + f15 f20.

It is within the limits of computational feasibility
to find all possible quartic relations involving the
invariants for this model; i.e. relations of form
a1E iE jE 20 ak $ [1,9] Aijk fi fjQk =0. To do this, we must
construct a matrix H of dimension 1890×1890.
We found that rank(H)=1845. Each of the
1890−1845=45 relations turns out to be one of the
45 trivials relations of form QiQj −QjQi =0. Thus
there are no non-trivial quartic relations among the
polynomials Q1, . . . , Q9.

All these functions, whose invariant status has been
confirmed with the help of symbolic computing, are
not invariant when applied to spectra f generated by
the trees T2 and T3 of Fig. 2.

Invoking the arguments of Section 3 above, there
should be ten algebraically independent invariants for
this model. There must thus be one invariant in f for
which the functional form is not quadratic.

5.3.   

The evolution of nucleotide sequences is most
frequently modeled so that S contains symmetric
substitution matrices on the set of four nucleotide
bases {A, G, C, T}, with uniform initial distribution
p. Such models are inappropriate when the observed
base compositions deviate strongly from uniform,
because evolutionary inference methods, assuming
uniformity and symmetry, are likely to group species
on the basis of similar base compositions rather than
true homology. Ferretti & Sankoff (1994) investigated
asymmetric matrices and arbitrary initial distri-
butions as models for evolution where the phyloge-
netic inference problem involves species with skewed
(AT-rich or AT-poor) base compositions. The three
difficulties faced in this study were: first, that it was
not trivial to define a constrained semigroup modeling
skewed base compositions; second, that even when
such semigroups were found, there were not
necessarily any low-degree polynomial phylogenetic
invariants; and third, that the empirical methodology
quickly became computationally difficult as the
number of parameters increased.

f6 = f(1, 3, 4)+ f(2, 3, 4)+ f(1, 4, 3)+ f(2, 4, 3)

f7 = f(1, 3, 2)+ f(1, 4, 2)+ f(2, 3, 1)+ f(2, 4, 1)

f8 = f(1, 2, 1)+ f(2, 1, 2)

f9 = f(1, 2, 3)+ f(1, 2, 4)+ f(2, 1, 3)+ f(2, 1, 4)

f10 = f(1, 2, 2)+ f(2, 1, 1)

f11 = f(3, 1, 1)+ f(3, 2, 2)+ f(4, 1, 1)+ f(4, 2, 2)

f12 = f(3, 1, 3)+ f(3, 2, 3)+ f(4, 1, 4)+ f(4, 2, 4)

f13 = f(3, 1, 4)+ f(3, 2, 4)+ f(4, 1, 3)+ f(4, 2, 3)

f14 = f(3, 1, 2)+ f(3, 2, 1)+ f(4, 1, 2)+ f(4, 2, 1)

f15 = f(3, 3, 1)+ f(3, 3, 2)+ f(4, 4, 1)+ f(4, 4, 2)

f16 = f(3, 3, 3)+ f(4, 4, 4)

f17 = f(3, 3, 4)+ f(4, 4, 3)

f18 = f(3, 4, 1)+ f(3, 4, 2)+ f(4, 3, 1)+ f(4, 3, 2)

f19 = f(3, 4, 3)+ f(4, 3, 4)

f20 = f(3, 4, 4)+ f(4, 3, 3).

The symmetries ensure that each of the components
of fi are equal, for each matrix in S. We have also that
a fi =1. Applying our method, we find a matrix G of
dimension 210×210 and of rank 198. After
eliminating cubic dependences among the 12 invari-
ants thus found, we are left with the following nine
quadratic invariants:

Q1 =−f2 f11 +2f3 f12 +2f1 f13 − f2 f14 + f5 f15

+f6 f15 −2f7 f16 −2f4 f17

Q2 =−f2 f11 +2f1 f12 +2f3 f13 − f2 f14 + f5 f15

+f6 f15 −2f4 f16 −2f7 f17

Q3 = f9 f11 −2f10 f12 −2f8 f13 + f9 f14 − f5 f18

−f6 f18 +2f7 f19 +2f4 f20

Q4 = f9 f11 −2f8 f12 −2f10 f13 + f9 f14 − f5 f18

−f6 f18 +2f4 f19 +2f7 f20

Q5 = f9 f15 −2f10 f16 −2f8 f17 − f2 f18

+2f3 f19 +2f1 f20
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In the search for a tractable model for the evolution
of skewed base composition, the following scenario
was postulated. A group of organisms evolves in
similar environments, possibly different from that of
their common ancestor, and this environment puts a
constant asymmetric pressure on mutation ten-
dencies, so that the chances of changing state in one
direction is a constant multiplied by that of the other
direction, this constant being universal across the
group of organisms. Thus, given a constant cq 1,
consider matrices of the form:

M=01− a
ca

a
1− ca1,

where a varies between 0 and 1/2c. It is easy to prove
that these matrices form a semigroup, which we
denote Sc. In a biological context, we might imagine
that c might range as high as 2 or 3.

Consider first the case of N=3 species and the tree
T1 of Fig. 2. The parameter space now is five
dimensional (the probability p1 and the four matrix
parameters a) and the matrix G, as computed from
v=23(23 +1)/2, is 36×36.

Calculation shows that rank(G)=35 for
c=1, 2, 3, . . . so that a basis of the subspace ker(G)
contains only one element. For all values of c, this
invariant could be expressed as

f2 f3 − f1 f4 − f2 f5 + (c−1)f4f5 + f1 f6

− (c−1)f3 f6 + cf4 f7 − cf6 f7 − cf3 f8 + cf5 f8,

where

f1 = f(1, 1, 1) f2 = f(1, 1, 2) f3 = f(1, 2, 1)

f4 = f(1,2,2)

f5 = f(2, 1, 1) f6 = f(2, 1, 2) f7 = f(2, 2, 1)

f8 = f(2, 2, 2).

With the help of symbolic computing, it was proved
explicitly that this form is invariant for all real c.
From the discussion in Section 3, it can be seen that
this is one of only two possible invariants for this
model. However, the other cannot be a quadratic
invariant.

The invariant found is a phylogenetic invariant,
since not only is it identically zero for T1 in Fig. 2, but
it is non-zero and varies with the edge matrix
parameters when applied to spectra f for trees T2 and
T3. Since T4 represents a degenerate case of T1 (in the
matrix associated with rE, a=0, representing a zero
edge length), the formula is also invariant for this case.

Ferretti & Sankoff (1994) also studied the more
difficult case of N=4 organisms. Consider the tree T1

in Fig. 3, which depicts the 26 rooted trees with N=4

F. 3. The 26 rooted trees on N=4 terminal vertices.

terminal vertices. The spectrum f has 16 terms for
which we use the following abbreviated notation:

f1 = f(1, 1, 1, 1) f9 = f(2, 1, 1, 1)

f2 = f(1, 1, 1, 2) f10 = f(2, 1, 1, 2)

f3 = f(1, 1, 2, 1) f11 = f(2, 1, 2, 1)

f4 = f(1, 1, 2, 2) f12 = f(2, 1, 2, 2)

f5 = f(1, 2, 1, 1) f13 = f(2, 2, 1, 1)

f6 = f(1, 2, 1, 2) f14 = f(2, 2, 1, 2)

f7 = f(1, 2, 2, 1) f15 = f(2, 2, 2, 1)

f8 = f(1, 2, 2, 2) f16 = f(2, 2, 2, 2).

Applying our method, a 136×136 matrix G of rank
125 was constructed for each of c=1, 2, 3, . . . . The
11 quadratic invariants making up ker(G) were found.
Five cubic and two quartic relations were then found
relating these invariants so that all except the
following four could be eliminated as being
algebraically dependent:

Q1 = f2 f5 − f3 f5 − f1 f6 + (c−1)f3 f6+cf4 f6 + f1 f7

− (c−1)f2 f7−cf4 f7 − cf2 f8 + cf3 f8

Q2 = f2 f9 − f3 f9 − f1 f10 + (c−1)f3 f10 + cf4 f10 + f1 f11

− (c−1)f2 f11 − cf4 f11 − cf2 f12 + cf3 f12

Q3 = f2 f5 − f1 f6 − f2 f9 + (c−1)f6 f9+f1 f10

−(c−1)f5 f10+cf6 f13−cf10 f13−cf5 f14+cf9 f14

Q4 = f3 f5 − f1 f7 − f3 f9 + (c−1)f7 f9 + f1 f11

−(c−1)f5 f11+cf7 f13−cf11 f13−cf5 f15+cf9 f15.
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The arguments in Section 3 ensure that there must be
two additional dependencies among these four
functions, expressible as linear combinations where
the coefficients are quotients of polynomials in the
components of f, but these are not yet known.

The Q are quadratic phylogenetic invariants; each
is invariant for certain of the trees in Fig. 3 and not
for others. This information is summarized in Table
2, where the invariance (or not) of each of Q1, . . . , Q4

is given for a spectrum f calculated according to the
26 topologies of Fig. 3.

The invariants for trees T2 and T3 can be obtained
from Q1, . . . , Q4 by simple permutation of the
frequencies fi . For example, the role of f4 in the
context of T1 is played by f6 in T2. To find the
invariants for T4, however, we must carry out the
complete procedure as for T1. After constructing the
matrix G, applying our method and eliminating the
algebraic dependencies, we finally arrive at just two
invariants, which turn out to be Q3 and Q4. The
invariants for the 11 trees of the same shape as T4 are
obtained by appropriately permuting the frequencies
fi in Q3 and Q4.

It can be seen that each of the invariants
corresponds to one pair of terminal vertices, either A
and B, or C and D; that is, each Q is invariant in all
and only those trees where the pair is closely grouped.
Thus Q1 is invariant for just those trees in Table 2

where C and D are at least as closely grouped as either
is with A or B; T1, T12, T15, T16, T17, T22, T25 and T26.

Using small subunit ribosomal RNA sequences,
Ferretti et al. (1994) used these invariants to confirm
the phylogenetic relationships differentiating among
four AT-rich fungi and among a set of AT-poor
organisms including two plant mitochondria and two
eubacteria closely related to the bacterial endosym-
biont thought to be ancestral to present-day
mitochondria.

Note that SCAV, which is asymmetric, has only been
shown to have linear invariants. A different approach
to correcting for skewed base composition, using
simulation, has recently been suggested by Steel et al.
(1993a).

6. Computational Considerations

In the light of the three preceding examples, it is
clear that our method is limited by the computational
size necessary for its application, not only in the search
for invariants, but also in the detection of algebraic
dependence among them. This computational size
depends directly on the dimension v2 of G or H. v
varies as a function of the number w of components in
the spectrum f and on the nature of the parametric
form Q. For example, to find linear invariants, v=w;
for quadratic invariants, v=w(w+1)/2; and gener-
ally, for polynomial invariants of degree d,
v=(w+ d−1)!/d!(w−1)! At worst, w= kN, but we
have seen how the existence of symmetries in the
evolutionary model allows us to reduce this number.
The existence of symmetries in a model is related to the
number of parameters necessary to define its semigroup
S and its root distribution p: the less the number of
parameters, the more symmetries there are and the
greater the possibility for working with a smaller G.

Ideally, we would like to have invariants for the
most general model possible, which would then be
applicable to all possible situations. In such a model,
we would have (k−1)(k+1) independent par-
ameters (k−1 for p and k(k−1) for S) and, from
Cavender (1991) we already know that there can be
no linear invariant for this. As for higher order
invariants, our method rapidly becomes impracticable
as k and N increase, because, in this case, w= kN.

One way of getting around this difficulty is to
develop methods that allow us to derive new invariants
with the help of known invariants for less general
models. This is the great interest in results such as
Proposition 4 of Cavender (1991) which stipulates
that a semigroup containing SCAV generates the same
invariants as SCAV (or none). Similarly, methods like
that of Fu & Li (1992b) that find all invariants for N

T 2
Invariants and topologies

Q1 Q2 Q3 Q4

T1 I I I I
T2 NI NI NI NI
T3 NI NI NI NI
T4 NI NI I I
T5 NI NI NI NI
T6 NI NI NI NI
T7 NI NI I I
T8 NI NI NI NI
T9 NI NI NI NI
T10 NI NI NI NI
T11 NI NI NI NI
T12 I I NI NI
T13 NI NI NI NI
T14 NI NI NI NI
T15 I I NI NI
T16 I I I I
T17 I I I I
T18 NI NI NI NI
T19 NI NI NI NI
T20 NI NI NI NI
T21 NI NI NI NI
T22 I I NI NI
T23 NI NI I I
T24 NI NI I I
T25 I I NI NI
T26 I I I I

I: invariant, NI: not invariant.
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species based on the invariants for N−1. Unfortu-
nately for our purposes, these two techniques are only
pertinent to linear invariants.

In the next section, we combine our method with
an ingenious technique from Felseinstein (1991) to
obtain, based on invariants for a two-state, two-par-
ameter per edge model, invariants for k=4 with ten
independent parameters per edge.

7. Cubic Invariants for a Ten-parameter Model

Consider the tree T1 with N=4 terminals in Fig.
3 and the model M2 with k=2 states {a, b},
characterized by the semigroup of matrices of form

a b

a

b 01− a
b

a
1− b1 (9)

and an arbitrary root distribution p. Let

f1 = f(a, a, a, a) f9 = f(b, a, a, a)

f2 = f(a, a, a, b) f10 = f(b, a, a, b)

f3 = f(a, a, b, a) f11 = f(b, a, b, a)

f4 = f(a, a, b, b) f12 = f(b, a, b, b)

f5 = f(a, b, a, a) f13 = f(b, b, a, a)

f6 = f(a, b, a, b) f14 = f(b, b, a, b)

f7 = f(a, b, b, a) f15 = f(b, b, b, a)

f8 = f(a, b, b, b) f16 = f(b, b, b, b) (10)

be the 16 components of the spectrum f=(f1, . . . , f16).
Applying our method, we find that there exists no
linear and no quadratic invariants for this model. We
do find, however, a set of 16 cubic phylogenetic
invariants, which we reduce to six after determining the
dependences of degree four and five in fi :

Q1 =−f3 f6 f9 + f2 f7 f9 + f3 f5 f10 − f1f7f10

− f2f5f11 + f1f6f11

Q2 =−f4 f6 f9 + f2 f8 f9 + f4 f5 f10 − f1 f8 f10

− f2 f5 f12 + f1 f6 f12

Q3 =−f3 f6 f13 + f2 f7 f13 + f3 f5 f14 − f1 f7 f14

− f2 f5 f15 + f1 f6 f15

Q4 =−f4 f6 f13 + f2 f8 f13 + f4 f5 f14 − f1 f8 f14

− f2 f5 f16 + f1 f6 f16

Q5 =−f4 f11 f13+f3 f12 f13+f4 f9 f15 − f1 f12 f15

− f3 f9 f16 + f1 f11 f16

Q6 =−f8 f11 f14+f7 f12 f14+f8f10 f15−f6 f12 f15

− f7f10f16 + f6f11f16 (11)

These six polynomials are invariant for the spectra f

calculated according to the trees T1, T4, T7, T10, T13,
T16, T17, T22, T23, T24, T25 and T26 of Fig. 3, but they
are not for the other trees in the same figure. Once
again, we can show that there exists at least four other
independent algebraic relations among Q1, . . . , Q6.

Now consider the state space {1, 2, 3, 4}. Suppose
that the event ‘‘to be in state a’’ is defined as the event
‘‘to be in state 1 or 2’’ and the event ‘‘to be in state
b’’ is defined as the event ‘‘to be in state 3 or 4’’. With
these definitions, we can extend our model M2 to a
stochastic model M4 with four states, in which, for
example, each of the four substitutions (1, 3), (1, 4),
(2, 3) and (2, 4) is represented by a substitution (a, b)
in model M2. Let

G
G

G

F

f

c
g
l
q

d
h
n
r

e
i
o
s

f
j
p
t

G
G

G

J

j

(12)

be a transition matrix of M4. By (9), P[(a, b)]= a and
P[(b, a)]= b, so the following constraints should
hold:

e+ f= i+ j= a

1+ n= q+ r= b, (13)

and hence the matrix (12) contains ten independent
parameters. It is easily verified that the set of matrices
of form (12) with constraints (13) do constitute a
semigroup. With the correspondence we defined
between M2 and M4, each of the frequencies fi in (10)
can be written as a linear combination of 16 different
components of the spectrum f of model M4. For
example,

f3 = f(1, 1, 3, 1)+ f(1, 1, 3, 2)+ f(1, 2, 3, 1)

+ f(1, 2, 3, 2)+ f(2, 1, 3, 1)+ f(2, 1, 3, 2)

+ f(2, 2, 3, 1)+ f(2, 2, 3, 2)+ f(1, 1, 4, 1)

+ f(1, 1, 4, 2)+ f(1, 2, 4, 1)+ f(1, 2, 4, 2)

+ f(2, 1, 4, 1)+ f(2, 1, 4, 2)

+ f(2, 2, 4, 1)+ f(2, 2, 4, 2).

Substituting this equation and the 15 others of the
same type in (11), we obtain six cubic invariants for
the model M4. Given the length of these expressions,
we present only the first one.

Q'1 =−(f(1, 1, 3, 1)+ f(1, 1, 3, 2)+ f(1, 1, 4, 1)

+ f(1, 1, 4, 2)+ f(1, 2, 3, 1)+ f(1, 2, 3, 2)

+f(1, 2, 4, 1)+ f(1, 2, 4, 2)+ f(2, 1, 3, 1)

+ f(2, 1, 3, 2)+ f(2, 1, 4, 1)+ f(2, 1, 4, 2)
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+ f(2, 2, 3, 1)+ f(2, 2, 3, 2)+ f(2, 2, 4, 1)

+f(2, 2, 4, 2))(f(1, 3, 1, 3)+ f(1, 3, 1, 4)

+f(1, 3, 2, 3)+ f(1, 3, 2, 4)+ f(1, 4, 1, 3)

+f(1, 4, 1, 4)+ f(1, 4, 2, 3)+ f(1, 4, 2, 4)

+f(2, 3, 1, 3)+ f(2, 3, 1, 4)+ f(2, 3, 2, 3)

+f(2, 3, 2, 4)+ f(2, 4, 1, 3)+ f(2, 4, 1, 4)

+f(2, 4, 2, 3)+ f(2, 4, 2, 4))(f(3, 1, 1, 1)

+f(3, 1, 1, 2)+ f(3, 1, 2, 1)+ f(3, 1, 2, 2)

+f(3, 2, 1, 1)+ f(3, 2, 1, 2)+f(3, 2, 2, 1)

+f(3, 2, 2, 2)+ f(4, 1, 1, 1)+ f(4, 1, 1, 2)

+f(4, 1, 2, 1)+f(4, 1, 2, 2)+ f(4, 2, 1, 1)

+f(4, 2, 1, 2)+ f(4, 2, 2, 1)+ f(4, 2, 2, 2))

+(f(1, 1, 1, 3)+ f(1, 1, 1, 4)+ f(1, 1, 2, 3)

+f(1, 1, 2, 4)+ f(1, 2, 1, 3)+ f(1, 2, 1, 4)

+f(1, 2, 2, 3)+ f(1, 2, 2, 4)+ f(2, 1, 1, 3)

+f(2, 1, 1, 4)+ f(2, 1, 2, 3)+ f(2, 1, 2, 4)

+f(2, 2, 1, 3)+ f(2, 2, 1, 4)+ f(2, 2, 2, 3)

+f(2, 2, 2, 4))(f(1, 3, 3, 1)+ f(1, 3, 3, 2)

+f(1, 3, 4, 1)+ f(1, 3, 4, 2)+ f(1, 4, 3, 1)

+f(1, 4, 3, 2)+ f(1, 4, 4, 1)+ f(1, 4, 4, 2)

+f(2, 3, 3, 1)+ f(2, 3, 3, 2)+ f(2, 3, 4, 1)

+f(2, 3, 4, 2)+ f(2, 4, 3, 1)+ f(2, 4, 3, 2)

+f(2, 4, 4, 1)+ f(2, 4, 4, 2))(f(3, 1, 1, 1)

+f(3, 1, 1, 2)+ f(3, 1, 2, 1)+ f(3, 1, 2, 2)

+f(3, 2, 1, 1)+ f(3, 2, 1, 2)+ f(3, 2, 2, 1)

+f(3, 2, 2, 2)+ f(4, 1, 1, 1)+ f(4, 1, 1, 2)

+f(4, 1, 2, 1)+f(4, 1, 2, 2)+ f(4, 2, 1, 1)

+f(4, 2, 1, 2)+ f(4, 2, 2, 1)+ f(4, 2, 2, 2))

+(f(1, 1, 3, 1)+ f(1, 1, 3, 2)+ f(1, 1, 4, 1)

+f(1, 1, 4, 2)+ f(1, 2, 3, 1)+ f(1, 2, 3, 2)

+f(1, 2, 4, 1)+ f(1, 2, 4, 2)+ f(2, 1, 3, 1)

+f(2, 1, 3, 2)+ f(2, 1, 4, 1)+ f(2, 1, 4, 2)

+f(2, 2, 3, 1)+ f(2, 2, 3, 2)+ f(2, 2, 4, 1)

+f(2, 2, 4, 2))(f(1, 3, 1, 1)+ f(1, 3, 1, 2)

+f(1, 3, 2, 1)+ f(1, 3, 2, 2)+ f(1, 4, 1, 1)

+f(1, 4, 1, 2)+f(1, 4, 2, 1)+ f(1, 4, 2, 2)

+f(2, 3, 1, 1)+ f(2, 3, 1, 2)+ f(2, 3, 2, 1)

+f(2, 3, 2, 2)+ f(2, 4, 1, 1)+ f(2, 4, 1, 2)

+f(2, 4, 2, 1)+ f(2, 4, 2, 2))(f(3, 1, 1, 3)

+f(3, 1, 1, 4)+ f(3, 1, 2, 3)+ f(3, 1, 2, 4)

+f(3, 2, 1, 3)+ f(3, 2, 1, 4)+ f(3, 2, 2, 3)

+f(3, 2, 2, 4)+ f(4, 1, 1, 3)+ f(4, 1, 1, 4)

+f(4, 1, 2, 3)+ f(4, 1, 2, 4)+ f(4, 2, 1, 3)

+f(4, 2, 1, 4)+ f(4, 2, 2, 3)+ f(4, 2, 2, 4))

−(f(1, 1, 1, 1)+ f(1, 1, 1, 2)+ f(1, 1, 2, 1)

+f(1, 1, 2, 2)+ f(1, 2, 1, 1)+ f(1, 2, 1, 2)

+f(1, 2, 2, 1)+ f(1, 2, 2, 2)+ f(2, 1, 1, 1)

+f(2, 1, 1, 2)+ f(2, 1, 2, 1)+f(2, 1, 2, 2)

+f(2, 2, 1, 1)+ f(2, 2, 1, 2)+ f(2, 2, 2, 1)

+f(2, 2, 2, 2))(f(1, 3, 3, 1)+ f(1, 3, 3, 2)

+f(1, 3, 4, 1)+ f(1, 3, 4, 2)+ f(1, 4, 3, 1)

+f(1, 4, 3, 2)+ f(1, 4, 4, 1)+ f(1, 4, 4, 2)

+f(2, 3, 3, 1)+ f(2, 3, 3, 2)+ f(2, 3, 4, 1)

+f(2, 3, 4, 2)+ f(2, 4, 3, 1)+ f(2, 4, 3, 2)

+f(2, 4, 4, 1)+ f(2, 4, 4, 2))(f(3, 1, 1, 3)

+f(3, 1, 1, 4)+ f(3, 1, 2, 3)+ f(3, 1, 2, 4)

+f(3, 2, 1, 3)+ f(3, 2, 1, 4)+f(3, 2, 2, 3)

+f(3, 2, 2, 4)+ f(4, 1, 1, 3)+ f(4, 1, 1, 4)

+f(4, 1, 2, 3)+f(4, 1, 2, 4)+ f(4, 2, 1, 3)

+f(4, 2, 1, 4)+ f(4, 2, 2, 3)+ f(4, 2, 2, 4))

−(f(1, 1, 1, 1)+ f(1, 1, 1, 2)+ f(1, 1, 2, 1)

+f(1, 1, 2, 2)+ f(1, 2, 1, 1)+f(1, 2, 1, 2)

+f(1, 2, 2, 1)+ f(1, 2, 2, 2)+ f(2, 1, 1, 1)

+f(2, 1, 1, 2)+ (2, 1, 2, 1)+ f(2, 1, 2, 2)

+f(2, 2, 1, 1)+ f(2, 2, 1, 2)+ f(2, 2, 2, 1)

+f(2, 2, 2, 2))(f(1, 3, 3, 1)+ f(1, 3, 3, 2)

+f(1, 3, 4, 1)+ f(1, 3, 4, 2)+f(1, 4, 3, 1)

+f(1, 4, 3, 2)+ f(1, 4, 4, 1)+ f(1, 4, 4, 2)

+f(2, 3, 3, 1)+f(2, 3, 3, 2)+ f(2, 3, 4, 1)

+f(2, 3, 4, 2)+ f(2, 4, 3, 1)+ f(2, 4, 3, 2)

+f(2, 4, 4, 1)+ f(2, 4, 4, 2))(f(3, 1, 1, 3)

+f(3, 1, 1, 4)+ f(3, 1, 2, 3)+ (3, 1, 2, 4)

+f(3, 2, 1, 3)+ f(3, 2, 1, 4)+ f(3, 2, 2, 3)
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+f(3, 2, 2, 4)+f(4, 1, 1, 3)+ f(4, 1, 1, 4)

+f(4, 1, 2, 3)+ f(4, 1, 2, 4)+ f(4, 2, 1, 3)

+f(4, 2, 1, 4)+ f(4, 2, 2, 3)+ f(4, 2, 2, 4))

−(f(1, 1, 1, 3)+ f(1, 1, 1, 4)+ f(1, 1, 2, 3)

+f(1, 1, 2, 4)+ f(1, 2, 1, 3)+ f(1, 2, 1, 4)

+f(1, 2, 2, 3)+ f(1, 2, 2, 4)+ f(2, 1, 1, 3)

+f(2, 1, 1, 4)+ f(2, 1, 2, 3)+ f(2, 1, 2, 4)

+f(2, 2, 1, 3)+ f(2, 2, 1, 4)+ f(2, 2, 2, 3)

+f(2, 2, 2, 4))(f(1, 3, 1, 1)+ f(1, 3, 1, 2)

+f(1, 3, 2, 1)+ f(1, 3, 2, 2)+ f(1, 4, 1, 1)

+f(1, 4, 1, 2)+ f(1, 4, 2, 1)+ f(1, 4, 2, 2)

+f(2, 3, 1, 1)+ f(2, 3, 1, 2)+ f(2, 3, 2, 1)

+f(2, 3, 2, 2)+ f(2, 4, 1, 1)+ f(2, 4, 1, 2)

+f(2, 4, 2, 1)+ f(2, 4, 2, 2))(f(3, 1, 3, 1)

+f(3, 1, 3, 2)+ f(3, 1, 4, 1)+ f(3, 1, 4, 2)

+f(3, 2, 3, 1)+ f(3, 2, 3, 2)+f(3, 2, 4, 1)

+f(3, 2, 4, 2)+ f(4, 1, 3, 1)+ f(4, 1, 3, 2)

+f(4, 1, 4, 1)+ f(4, 1, 4, 2)+ f(4, 2, 3, 1)

+f(4, 2, 3, 2)+ f(4, 2, 4, 1)+ f(4, 2, 4, 2))

+(f(1, 1, 1, 1)+ f(1, 1, 1, 2)+ f(1, 1, 2, 1)

+f(1, 1, 2, 2)+ f(1, 2, 1, 1)+ f(1, 2, 1, 2)

+f(1, 2, 2, 1)+ f(1, 2, 2, 2)+ f(2, 1, 1, 1)

+f(2, 1, 1, 2)+ f(2, 1, 2, 1)+ f(2, 1, 2, 2)

+f(2, 2, 1, 1)+ f(2, 2, 1, 2)+ f(2, 2, 2, 1)

+f(2, 2, 2, 2))(f(1, 3, 1, 3)+ f(1, 3, 1, 4)

+f(1, 3, 2, 3)+ f(1, 3, 2, 4)+ f(1, 4, 1, 3)

+f(1, 4, 1, 4)+ f(1, 4, 2, 3)+ f(1, 4, 2, 4)

+f(2, 3, 1, 3)+ f(2, 3, 1, 4)+ f(2, 3, 2, 3)

+f(2, 3, 2, 4)+ f(2, 4, 1, 3)+ f(2, 4, 1, 4)

+f(2, 4, 2, 3)+ f(2, 4, 2, 4))(f(3, 1, 3, 1)

+f(3, 1, 3, 2)+ f(3, 1, 4, 1)+ f(3, 1, 4, 2)

+f(3, 2, 3, 1)+ f(3, 2, 3, 2)+ f(3, 2, 4, 1)

+f(3, 2, 4, 2)+ f(4, 1, 3, 1)+ f(4, 1, 3, 2)

+f(4, 1, 4, 1)+ f(4, 1, 4, 2)+ f(4, 2, 3, 1)

+f(4, 2, 3, 2)+ f(4, 2, 4, 1)+ f(4, 2, 4, 2)).

By construction, the six polynomials thus derived are
invariants for the same trees as Q1, Q2, Q3, Q4, Q5 and
Q6.

8. Conclusion

The empirical method is fundamentally a discovery
tool for identifying and relating invariants. It is
conceptually simple and is capable of finding all
invariants of a given functional form. In earlier work
(Ferretti & Sankoff, 1993), however, it appeared to
have two major difficulties that threatened to limit its
utility for all but the smallest problems. One of these
is the computational cost of dealing with the large
matrices generated during the analysis. The second is
the problem of reducing the large number of forms
found to a minimal set of algebraically independent
functions, or even knowing the size of this set. Still
another problem facing any attempts to use invariants
other than linear is the i.i.d. assumption that permit
us to analyze one position as representing all
positions.

In this paper we have attempted to make some
headway against these problems. For example, we
have demonstrated that there is a wide variety of
models that can be anlyzed using moderate compu-
tational resources. We were required to manipulate
matrices of size 2000×2000. It does not seem
impossible that the matrices of size 32 000×32 000
necessary for an attack on the 12-parameter model
with our method should be feasible in the
not-too-distant future.

The problem of determining the maximum number
of algebraically independent invariants seems to hinge
on whether it suffices to consider only polynomial
invariants, which seems likely given the results to
date. In this case, rank(D) should be constant over
parameter space, not only in a neighbourhood around
each point (which is all we can say from general
implicit function considerations), and it would suffice
to calculate it for one point only. This is quite feasible
at the present time.

In addition, until we know whether it suffices to
consider only polynomial invariants that are globally
valid in parameter space, we cannot prove our
method identifies all invariants. For example, if an
invariant had two different polynomial expressions in
two sampled regions of parameter space, then our
method would in general not identify it, since (at
least) two sampled points would not generally be on
the polynomial corresponding to the other region.

As for the i.i.d. constraint, we have taken the first
steps towards allowing dependence among sequence
positions.
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Future direction for phylogenetic invariant re-
search will involve not only the search for a complete
set of invariants for SPD but also feasible approaches
to incorporating the invariant methodology into
practical algorithms for constructing trees on large
members of terminal vertices.
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APPENDIX A

Quadratic Invariants for S2K and the Tree T1 of

Fig. 1

Q1 = (f1 − f6)(f12 − f10)+ (f2 − f4)(f8 − f14)

Q2 = (f1 − f6)(f23 − f20)+ (f2 − f4)(f9 − f26)

Q3 = (f1 − f6)(f33 − f30)+ (f2 − f4)(f27 − f15)

Q4 = (f2 − f4)(f19 − f31)+ (f3 − f16)(f12 − f10)

Q5 = (f2 − f4)(f22 − f28)+ (f5 − f17)(f12 − f10)

Q6 = f1 f34 + f6 f34 + f7 f10 + f7 f12

−f2 f25 − f4 f25 − f8 f18 − f14 f18

Q7 =2f1 f24 +2f1 f32 +2f6 f13 + f7 f21 + f7 f29

−f2 f1 f13 − f3 f27 − f5 f26 − f9 f17 − f15 f16

Q8 =2f1 f21 +2f1 f29 +2f6 f11 + f7 f24 + f7 f32

−2f1 f11 − f3 f26 − f5 f27 − f9 f16 − f15 f17

Q9 =2(f2 − f4)(f11 − f29)+ (f3 − f16)(f23 − f20)

Q10 =2f1 f28 +2f6 f22 + f7 f19 + f7 f31

−2f5 f14 −2f8 f17 − f3 f25 − f16 f25

Q11 =2f1 f32 +2f6 f24 + f7 f21 + f7 f29

−f3 f15 − f5 f26 − f9 f17 − f16 f27

Q12 =2(f2 − f4)(f13 − f32)+ (f5 − f17)(f23 − f20)

Q13 = (f5 − f17)(f24 − f13)+ (f3 − f16)(f11 − f21)

Q14 =2f1 f31 +2f6 f19 + f7 f22 + f7 f28

−2f3 f14 −2f8 f16 − f5 f25 − f17 f25

Q15 =2(f2 − f4)(f21 − f11)+ (f5 − f17)(f33 − f30)

Q16 =2f1 f12+2f6 f10+f7 f34 − f2 f14−2f4 f8 − f18 f25

Q17 =2f1 f33 +2f6 f30 + f7 f20 + f7 f23

−2f2 f15 −2f4 f27 − f9 f18 − f18 f26

Q18 =2f1 f23 +2f6 f20 + f7 f30 + f7 f33

−2f2 f26 −2f4 f9 − f15 f18 − f18 f27

Q19 =2f3 f12 +2f10 f16 + f5 f34 + f17 f34 −2f2 f31

−2f4 f19 − f18 f22 − f18 f28
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Q20 = f3 f33 + f5 f23 + f16 f30 + f17 f20 −2f2 f32

−2f4 f24 − f18 f21 − f18 f29

Q21 =2f5 f12 +2f10 f17 + f3 f34 + f16 f34 −2f2 f28

−2f4 f22 − f18 f19 − f18 f31

Q22 = f3 f23 + f16 f20 + f17 f30 −2f2 f29

−2f4 f21 − f18 f24 − f18 f32

Q23 =2f8 f13 + f9 f28 + f15 f31 + f19 f27 + f22 f26

−2f8 f24 −2f8 f32 −2f13 f14 − f21 f25 − f25 f29

Q24 =2f8 f11 + f9 f31 + f15 f28 + f19 f26 + f22 f27

−2f8 f21 −2f8 f29 −2f11 f14 − f24 f25 − f25 f32

Q25 =2(f8 − f14)(f13 − f32)+ (f9 − f26)(f28 − f22)

Q26 =2(f8 − f14)(f11 − f29)+ (f9 − f26)(f31 − f19)

Q27 =2f8 f33 +2f14 f30 + f20 f25 + f23 f25

−2f10 f14 −2f12 f27 − f9 f34 − f26 f34

Q28 =2(f8 − f14)(f11 − f21)

+(f15 − f27)(f28 − f22)

Q29 =2f8 f23 +2f14 f20 + f25 f30 + f25f33 −2f9 f12

−2f10 f26 − f15 f34 − f27 f34

Q30 =2f10 f32 +2f12 f24 + f21 f34 + f29 f34 − f19 f33

−f20 f28 − f22 f23 − f30 f31

Q31 = f19 f23 + f20 f31 + f22 f33 + f28 f30 −2f10 f29

−2f12 f21 − f24 f34 − f32 f34

Q32 = (f1 − f6)(f19 − f31)+ (f3 − f16)(f14 − f8)

Q33 = (f1 − f6)(f22 − f28)+ (f5 − f17)(f14 − f8)

Q34 = (f8 − f14)(f23 − f20)+ (f9 − f26)(f10 − f12)

Q35 = (f8 − f14)(f33 − f30)+ (f27 − f15)(f10 − f12)

Q36 =2(f1 − f6)(f11 − f29)+ (f3 − f16)(f26 − f9)

Q37 =2(f2 − f4)(f24 − f13)+ (f3 − f16)(f33 − f30)

Q38 =2(f1 − f6)(f13 − f32)+ (f5 − f17)(f26 − f9)

Q39 =2f1 f29 +2f6 f21 + f7 f24 + f7 f32 − f3 f26

−f5 f15 − f9 f16 − f17 f27

Q40 = (f3 − f16)(f13 − f32)+ (f5 − f17)(f29 − f11)

Q41 = (f3 − f16)(f22 − f28)+ (f5 − f17)(f31 − f19)

Q42 =2(f10 − f12)(f13 − f32)+ (f20 − f23)(f28 − f22)

Q43 =2(f10 − f12)(f11 − f29)+ (f19 − f31)(f23 − f20)

Q44 = (f11 − f21)(f19 − f31)+ (f13 − f24)(f28 − f22)

Q45 = (f11 − f29)(f11 − f21)+ (f13 − f32)(f24 − f13)

Q46 = (f9 − f26)(f33 − f30)+ (f15 − f27)(f23 − f20)

Q47 = (f9 − f26)(f13 − f24)+ (f11 − f29)(f27 − f15)

Q48 =2(f8 − f14)(f13 − f24)+ (f15 − f27)(f31 − f19)

Q49 = (f9 − f26)(f11 − f21)+ (f13 − f32)(f27 − f15)

Q50 =2(f10 − f12)(f21 − f11)+ (f22 − f28)(f33 − f30)

Q51 = (f11 − f29)(f33 − f30)+ (f13 − f24)(f23 − f20)

Q52 = (f11 − f29)(f22 − f28)+ (f13 − f32)(f31 − f19)

Q53 =2f10 f24 +2f10 f32 +2f12 f13 + f21 f34 + f29 f34

−2f10 f13 − f19 f30 − f20 f28 − f22 f23 − f31 f33

Q54 = (f11 − f21)(f23 − f20)+ (f13 − f32)(f33 − f30)

(A.1)

APPENDIX B

Cubic Relations of Form (4) Between Q1, . . . , Q54

f3Q1 − f16Q1 − f1Q4 + f6Q4 + f2Q32 − f4Q32 =0

f5Q1 − f17Q1 − f1Q5 + f6Q5 + f2Q33 − f4Q33 =0

f20Q1 − f23Q1 − f10Q2 + f12Q2 + f2Q34 − f4Q34 =0

f30Q1 − f33Q1 − f10Q3 + f12Q3 + f2Q35 − f4Q35 =0

f3Q2 − f16Q2 − f1Q9 + f6Q9 + f2Q36 − f4Q36 =0

f16Q3 − f3Q3 − f2Q7 + f4Q7 + f2Q11 − f4Q11

+ f1Q37 − f6Q37 =0

f5Q2 − f17Q2 − f1Q12 + f6Q12 + f2Q38 − f4Q38 =0

f5Q7 − f17Q7 − f3Q8 + f16Q8 − f5Q11 + f17Q11

−2f1Q13 +2f6Q13 + f3Q39 − f16Q39 =0

f5Q9 − f17Q9 − f3Q12 + f16Q12 +2f2Q40 −2f4Q40 =0

f5Q4 − f17Q4 − f3Q5 + f16Q5 + f2Q41 − f4Q41 =0

f20Q5 − f23Q5 − f10Q12 + f12Q12 + f2Q42 − f4Q42 =0

f20Q4 − f23Q4 − f10Q9 + f12Q9 + f2Q43 − f4Q43 =0

f21Q4 − f11Q4 + f13Q5 − f24Q5 − f10Q13 + f12Q13

+f2Q44 − f4Q44 =0

f21Q9 − f11Q9 + f13Q12 − f24Q12 − f20Q13 + f23Q13

+2f2Q45 −2f4Q45 =0

f30Q2 − f33Q2 − f20Q3 + f23Q3 + f2Q46 − f4Q46 =0

2f24Q2 −2f13Q2 + f20Q7 − f23Q7 + f15Q9 − f27Q9

−f20Q11 + f23Q11 +2f2Q47 −2f4Q47 =0
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2f24Q1 −2f13Q1 + f15Q4 − f27Q4 + f10Q7 − f12Q7

−f10Q11 + f12Q11 + f2Q48 − f4Q48 =0

f15Q25 − f27Q25−f9Q28+f26Q28+2f8Q94−2f14Q49=0

f30Q5 − f33Q5 − f10Q15 + f12Q15 + f2Q50 − f4Q50 =0

2f29Q3 −2f11Q3 − f20Q7 + f23Q7 − f15Q9 + f27Q9

+ f20Q11 − f23Q11 +2f1Q51 −2f6Q51 =0

f19Q25−f31Q25−f22Q26+f28Q26+2f8Q52−2f14Q52=0

2f21Q4 −2f11Q4−2f10Q13 +2f12Q13 − f19Q15 + f31Q15

−f5Q30 + f17Q30 + f5Q53 − f17Q53 =0

f30Q12 − f33Q12 − f20Q15+f23Q15+2f2Q54−2f4Q54=0

(B.1)


