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ABSTRACT

Motivation: Some present day species have incurred a whole
genome doubling event in their evolutionary history, and this
is reflected today in patterns of duplicated segments scattered
throughout their chromosomes. These duplications may be used as
data to ‘halve’ the genome, i.e. to reconstruct the ancestral genome
at the moment of doubling, but the solution is often highly nonunique.
To resolve this problem, we take account of outgroups, external
reference genomes, to guide and narrow down the search.
Results: We improve on a previous, computationally costly, ‘brute
force’ method by adapting the genome halving algorithm of
El-Mabrouk and Sankoff so that it rapidly and accurately constructs
an ancestor close the outgroups, prior to a local optimization
heuristic. We apply this to reconstruct the predoubling ancestor
of Saccharomyces cerevisiae and Candida glabrata, guided by the
genomes of three other yeasts that diverged before the genome
doubling event. We analyze the results in terms (1) of the minimum
evolution criterion, (2) how close the genome halving result is to
the final (local) minimum and (3) how close the final result is to an
ancestor manually constructed by an expert with access to additional
information. We also visualize the set of reconstructed ancestors
using classic multidimensional scaling to see what aspects of the two
doubled and three unduplicated genomes influence the differences
among the reconstructions.
Availability: The experimental software is available on request.
Contact: sankoff@uottawa.ca

1 INTRODUCTION
Whole genome doubling (WGD) is a rare but important type of
evolutionary event, often giving rise to major new lineages. In its
various forms it has occurred across the eukaryotic spectrum, from
the pathogenic protist Giardia to the ancestor of brewer’s yeast, to
most of the plant lineages, to several insect species, to the salmonid
fishes, to amphibians and even to mammalian species.

WGD is followed, over evolutionary time, by genome re-
arrangement through intra- and interchromosomal movement of
genetic material. The phylogenetic study of synteny, gene order
and chromosomal evolution becomes blocked because of the
extraordinarily high rates of paralogy in the species descended from
the WGD compared to sister species that diverged before the WGD.
If we could infer the ancestral genome that underwent the WGD, this
difficulty would be resolved. Thus the genome halving problem is
to reconstruct the ancestral genome on the basis of a decomposition
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of the present day genome into a set of apparently duplicated blocks
of genes or DNA sequence dispersed among the chromosomes.1

A linear-time algorithm to find the ancestral genome that minimizes
the genomic distance to the present day genome has been available
for some time (El-Mabrouk and Sankoff, 2003; El-Mabrouk et al.,
1999). Unfortunately, the solution to the combinatorial optimization
problem is not always directly interpretable as a solution to the
evolutionary biology problem. First, the algorithmic result suffers
from severe non-uniqueness. Second, in common with most methods
of inferring history, we have no direct way to verify if the answer
is correct. Our goal is to counteract these problems, first by guiding
the reconstruction by one or more reference, or outgroup, genomes
and second, by checking our results for a particular dataset against
an ancestor genome manually reconstructed by an expert.

If our guided reconstruction method were to be feasible and
accurate it could have wide application. One or more descendants
of a WGD event co-occur with unduplicated sister species in
many phylogenies. This is most prevalent among plants where,
for example, the poplars and willows descend from a common
WGD, while the closely related eurosid angiosperms like papaya
diverged before this event, but it also occurs in yeast, where
brewer’s yeast and several sister species share an origin in an
ancestral WGD, while other closely related species have earlier
divergence dates, in fish, where the salmonid species like trout
and salmon originate in a WGD event after diverging from the
related osmerid fish, in mammals, where some genera of viscacha
rodents share a WGD history while their relationship with very
similar octodontids predates this. In protists, the important pathogen
genus Giardia has undergone a form of WGD, while the related
enteromonad parasites have not, though this may be due to a post-
WGD loss rather than an early divergence. This very partial list of
examples emphasizes species whose genomes have been sequenced
or for which serious sequencing projects are underway or are being
actively promoted.

We first explored the idea of guided reconstruction for the
ancestral doubled genome of the maize (Zea mays) genome, with
the rice (Oryza sativa) and sorghum (Sorghum bicolor) genomes2

as outgroups (Zheng et al., 2006). Our strategy was to generate all
the 1.5×106 solutions to the genome halving problem for the maize
genome, and to identify the subset, containing 10–20 solutions that
have a minimum rearrangement distance with the rice (or sorghum)

1Sequence analysis tools for dating duplication events are not pertinent to this
problem since all pairs of duplicates in the doubled genome were generated
at the same historical moment.
2All cereals underwent earlier WGD event(s), but the effects of these can be
filtered out on the basis of greater sequence divergence.
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genome. We followed this with a local improvement heuristic
searching outside the immediate set of optimal halving solutions to
find the genome A that minimizes the sum of the distance between
the doubled form A⊕A and present day maize plus the distance
between rice (or sorghum) and the predoubling form A.

While this approach was feasible with the 34 doubled blocks in
maize, present in one copy in each outgroup, the heuristic search step
was time consuming, given that the starting points were relatively far
from optimal. Then we attempted to reconstruct the ancient doubled
yeast genome from which Saccharomyces cerevisiae is descended,
guided simultaneously by both of the undoubled outgroup genomes
Ashbya gossypii and Kluyveromyces waltii (Sankoff et al., 2007).
In these data the number of doubled genes we used was an order
of magnitude greater than the number of blocks in the cereals data,
and the number of solutions to the halving problem astronomical.
It is not feasible to exhaustively search the halving solutions to find
those that are closest to the outgroups, to say nothing of the heuristic
search step. Instead we tried working with a sample of halving
solutions, hoping to generate at least one initialization leading to
a good solution. It was not clear, however, how large the sample
should be, or how to validate the results, since the local optima
found in that study remained fairly far apart, as measured by genomic
distance.

The facts that halving guided by a single outgroup involves only
two genomes, and that both of its component parts, halving and
distance calculation, are basically linear time, suggests that this
problem might be susceptible to a polynomial-time analysis, in
contrast to problems such as the ‘median problem’ for three or more
genomes, which are NP-hard (Bryant, 1998; Caprara, 2003; Pe’er
and Shamir, 1998). We dispose of this hope at the outset, by showing
that the simplest problem of halving guided by one outgroup is
NP-hard.

Nevertheless, in the ensuing sections, we seek to replace the ‘brute
force’ approach of generating unconstrained halving solutions first,
i.e. before taking into consideration the outgroup genome(s). Instead,
we inject all pertinent information derivable from the outgroup(s)
into the halving algorithm, influencing hitherto arbitrary choices in
that algorithm so that the halving solution is guided towards the
outgroup(s).

We analyze data on two yeasts descended from the same doubling
event, S.cerevisiae and Candida glabrata, to try to reconstruct
the original doubled genome. Three related outgroup species are
currently available in the Yeast Gene Order Browser (YGOB, Byrne
and Wolfe, 2005): A.gossypii, K.waltii and Kluyveromyces lactis.
YGOB also furnishes an estimate of the ancestral doubled genome
painstakingly reconstructed by Jonathan Gordon on the basis of
multiple sources of information.

Our new algorithm greatly improves the accuracy of our
results, while drastically reducing the computational effort, both in
generating halving solutions and in the local optimization search.
We compare this new approach to the sampling approach, with
and without the local optimization step, from the viewpoints of the
objective function value obtained and computing time. We apply
our method to all combinations of the two descendants of the
doubled ancestor and four single genomes, the three species already
mentioned plus Gordon’s manually reconstructed ancestor.

We also use data-analytic methods to compare our inferred
predoubling genomes to each other and to the Gordon construct.

2 PROBLEM STATEMENT
Although the idea of guided genome halving is not difficult,
the prerequisite for understanding the analysis is to have some
knowledge of standard genome rearrangement problems, namely
genomic distance, genome halving and genome median. We can
only sketch these in Sections 2.2, 2.3 and 2.4 before enunciating the
guided genome halving (GGH) problems in Section 2.5. In Section 3,
we discuss the algorithms for these problems.

2.1 Genomes and rearrangement operations
A genome G is represented by a set of strings (called chromosomes)
of form {g11 ..g1n1

, ..,gχ1 ..gχnχ }, where n=n1 +···+nχ and
{|g..|}={1, ...,n}; i.e. each integer i∈{1, ...,n}, representing a
gene or other marker, appears exactly once in the genome and
may have either positive or negative polarity. The biologically
motivated operations generally include3 inversions (implying as
well change of sign, i.e. change of strand) of chromosomal
segments, e.g. h1 ···hu ···hv ···hm →h1 ···−hv ···−hu ···hm, and
reciprocal translocations, e.g. h1 ···hu ···hl, k1 ···kv ···km →
h1 ···kv ···km, k1 ···hu ···hl .

2.2 Genomic distance
The genome rearrangement distance d(G,H) is defined to be the
minimum number of operations necessary to convert one genome G
into another H.

The breakpoint distance—We say there is a ‘shared adjacency’ if
the signed integer gi,j+1 immediately follows gi,j on a chromosome
in H as well as on the i-th chromosome in G, or if −gij
follows −gi,j+1 in H. There are also shared adjacencies if
gi1 or −gini

are first terms on chromosomes in H or if gini
or −gi1

are last terms on chromosomes in H. Then if G and H have the
same number of chromosomes χ , the breakpoint distance dB(G,H)
is defined to be n+χ—the number of shared adjacencies.

2.3 Genome halving
Let T be a genome consisting of ψ chromosomes and 2n

genes a(1)
1 , ...,a(1)

n ;a(2)
1 , ...,a(2)

n , dispersed in any order on the

chromosomes. For each i, we call a(1)
i and a(2)

i ‘duplicates’, but there

is no particular property distinguishing all elements of the set of a(1)
i

in common from all those in the set of a(2)
i . A potential ‘doubled

ancestor’ of T is written A′⊕A′′, and consists of 2χ chromosomes,
where some half (χ ) of the chromosomes, symbolized by the

A′, contains exactly one of a(1)
i or a(2)

i for each i=1, ...,n. The
remaining χ chromosomes, symbolized by the A′′, are each identical

to one in the first half, in that where a(1)
i appears on a chromosome

in the A′, a(2)
i appears on the corresponding chromosome in A′′,

and where a(2)
i appears in A′, a(1)

i appears in A′′. We define A to be
either of the two halves of A′⊕A′′, where the superscript (1) or (2)

is suppressed from each a(1)
i or a(2)

i . These χ chromosomes, and
the n genes they contain, a1,...,an constitute a potential ‘doubled
ancestor’ of T .

The genome halving problem for T is to find an A for which some
d(A′⊕A′′,T ) is minimal.

3See Yancopoulos et al. (2005) for a more general inventory.
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2.4 The median problem
Let P,Q and R be three genomes on the same set of n genes.
The rearrangement median problem is to find a genome M such
that d(P,M)+d(Q,M)+d(R,M) is minimal. The breakpoint median
problem is to find a genome M such that dB(P,M)+dB(Q,M)+
dB(R,M) is minimal.

2.5 Guided genome halving
As in Section 2.3, let T be genome consisting ofψ chromosomes and

2n genes a(1)
1 , ...,a(1)

n ;a(2)
1 , ...,a(2)

n , dispersed in any order on the

chromosomes, where for each i, genes a(1)
i and a(2)

i are duplicates.
Any genome R is a reference or outgroup genome for T if it contains
the n genes a1,...,an.

There are a number of different formulations possible for GGH,
depending on the genomic distance used, and the number of
outgroups doing the guiding. Here we will study the cases of one
outgroup (Zheng et al., 2006) and two outgroups (Sankoff et al.,
2007), using the genomic distance d defined in Section 2.2, and we
will also analyze the complexity of the one outgroup problem in the
context of the breakpoint distance dB.

Let R be a reference genome for T. The GGH problem with one
outgroup is to find (an estimated ancestral) genome A such that some
d(R,A)+d(A′⊕A′′,T ) is minimal. Let R1 and R2 be two reference
genomes for T. The GGH problem with two outgroups is to find
A and a median genome M such that some d(R1,M)+d(R2,M)+
d(A,M)+d(A′⊕A′′,T ) is minimal.

3 ALGORITHMS FOR GENOME DISTANCE,
GENOME HALVING AND THE GENOME
MEDIAN

3.1 Distance
Rearrangement algorithms (Tesler, 2002) can be formulated in terms
of the bi-colored ‘breakpoint graph’, where each end (either 5′ or
3′) of a gene in genome G is represented by a vertex joined by a
black edge to the vertex for adjoining end of the adjacent gene, and
these same ends, represented by the same 2n vertices in the graph,
are joined by gray edges determined by the adjacencies in genome
H. In addition, if G has χ chromosomes, assuming without loss of
generality that this is at least as many as H, each vertex representing
a first or last term of some chromosome in G only is connected
by a black edge to an individual ‘cap’, or dummy, vertex so that
there are 2n+2χ vertices in all. The breakpoint graphs necessarily
consist of disjoint alternating color cycles and/or paths, and it can be
shown that, with some rare, easily identifiable exceptions, d(G,H)=
n+χ−c−�, where c is the number of cycles and � the number of
paths terminating in at least one cap. Calculating the distance can
be done in time linear in n.

The actual operations, d(G,H) in number, may be reconstructed
by successively choosing certain large cycles and paths in the
breakpoint graph to split into two, corresponding to a reversal or
translocation, until there are n−χ cycles each made up of two
vertices, a black edge and a gray edge, and 2χ paths each containing
one cap and one chromosome-terminating gene vertex connected by
a black edge. This requires somewhat more than linear time.

The breakpoint distance dB is easily calculated by storing all
adjacencies of G as it is input, and verifying for each gij as it is
encountered when H is input, whether its successor is gi,j+1.

3.2 Halving
In the rearrangement distance algorithm, construction of the
breakpoint graph is an easy step. The genome halving algorithms
(El-Mabrouk and Sankoff, 2003) also make use of the breakpoint
graph, but the problem here is the more difficult one of building the
breakpoint graph where one of the genomes (the doubled ancestor
A′⊕A′′) is unknown. This is done by segregating the vertices of
the graph in a natural way into subsets, such that the vertices of all
cycles must fall within a single subset, and then constructing these
cycles in an optimal way within each subset so that the black edges
correspond to the structure of the known genome T and the gray
edges define the adjacencies of A′⊕A′′.

As a first step each gene a in a doubled descendant is replaced by
a pair of vertices (at,ah) or (ah,at) depending if the DNA is read
from left to right or right to left. The duplicate of gene a= (at,ah)
is written ā= (āt,āh).

Following this, for each pair of neighbouring genes, say (at,ah)
and (bh,bt), the two adjacent vertices ah and bh are linked by a black
edge, denoted {ah,bh} in the notation of Bergeron et al. (2006). For a
vertex at the end of a chromosome, say bt , it generates a virtual edge
of form {bt,end}. Note that the use of ‘end’ instead of ‘cap’ reflects
a somewhat different book keeping for the beginnings and ends
of chromosome in the halving algorithm compared to the distance
algorithm in Section 3.1.

The edges thus constructed are then partitioned into natural
graphs according to the following principle: If an edge {x,y} belongs
to a natural graph, then so does some edge of form {x̄,z} and some
edge of form {ȳ,w}. If a natural graph has an even number of edges,
as on the left of Figure 1, it can be shown that in all optimal ancestral
doubled genomes, if a gray edge, representing two adjacent vertices
in the ancestor, has a vertex in this natural graph, then it necessarily
connects to another vertex in the same natural graph. For natural
graphs with an odd number of edges, which cannot be completed by
adding pairs of edges, there are one or more ways of grouping them
pairwise into supernatural graphs, as on the right of Figure 1. An
optimal doubled ancestor exists such that if a gray edge has a vertex
in this supernatural graph, then it connects to another vertex within
the same supernatural graph. Thus the supernatural graphs may be
completed one at a time.

Fig. 1. (left) Even-size natural graph completed by adding two pairs of gray
edges. (right) Two odd-size natural graphs, containing x,y,z vertices and
a,b,c vertices, respectively, combined into one supernatural graph so that
three pairs of gray edges may be added.
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An important detail in this construction is that before a gray edge
is added during the completion of a supernatural graph, it must be
checked to see that it would not inadvertently result in a circular
chromosome. This involves inspection within this supernatural
graph only. Key to the linear worst-case complexity of the halving
algorithm is that this check may be made in constant time.

Along with the multiplicity of solutions caused by different
possible constructions of supernatural graphs, within such graphs
and within the natural graphs, there may be many ways of drawing
the gray edges. Without repeating here the lengthy details of the
halving algorithm, it suffices to note that these alternate ways can be
generated by choosing one of the vertices within each supernatural
graph as a starting point.

3.3 Median
Unlike the genomic distances and genome halving, which can all
be calculated in linear time, the genome median problem, based
either on d or dB, is NP-hard (Bryant, 1998; Caprara, 2003;
Pe’er and Shamir, 1998). The heuristics (Bourque and Pevzner,
2002; http://www.cs.unm.edu/ moret/GRAPPA/) commonly used to
analyze the problem search for reversals that will move a genome
towards the other two. This is iterated as often as possible; otherwise
one of the genomes is moved towards only one of the others
without prejudicing its distance to the third, and the algorithm stops
when all three genomes become identical. These algorithms become
prohibitively costly with moderate n.

4 PREVIOUS WORK ON GGH

4.1 Guided genome halving with one outgroup
Consider T and a related unduplicated genome R with genes
orthologous to a1,...,an. Our problem is to find an unduplicated
genome A that minimizes, for some A′⊕A′′,

D(T ,R)=d(R,A)+d(A′⊕A′′,T ). (1)

Our solution in Zheng et al. (2006), as on the left of Figure 2, is to
generate the set S of genome halving solutions, then to focus on the
subset X ∈S′ ⊂S where d(R,X) is minimized.

We then minimize D(T ,R) by seeking heuristically for A along
any trajectory between an element X ∈S′ and the outgroups. First,
each possible genome on one or more trajectories between X and
R is examined in turn to see if it that decreases D(T ,R). If so, it is
taken as the current best value of X. When no better X is found for
any starting point in S′ the current value is taken to be A.

In our experience, any more comprehensive search becomes
computationally very costly, and very rarely finds a better solution.

When S′ is so large that an exhaustive search for a local
minimum becomes computationally too costly, or when it is too
costly to generate all of S in order to find S′, we may resort to
sampling S. In defining the gray edges in the supernatural graphs of
Section 3.2, we generally have several choices at some of the steps.
By randomizing this choice, we are effectively choosing a random
sample of X ∈S.

4.2 Guided genome halving with two outgroups
With reference to the right of Figure 2, consider T and two
unduplicated genomes R1 and R2 with genes orthologous to

Fig. 2. Halving a doubling descendent T , with one (R) or two (R1, R2)
unduplicated outgroups. The double circles represent two copies of potential
ancestral genomes, including solutions to the genome halving in S, and those
on best trajectories between S and outgroups.

a1,...,an. Our problem here is to find a genome A and a median
genome M for A,R1 and R2 that minimize

D(T ,R1,R2)=d(R1,M)+d(R2,M)+d(A,M)+d(A′⊕A′′,T ) (2)

for some A′⊕A′′. Our solution in Sankoff et al. (2007), as on the
right of Figure 2, was to generate the set S of solutions of the
genome halving problem, then to focus on the subset X ∈S′ ⊂S
where d(R1,M)+d(R2,M)+d(X,M) is minimized, using our own
implementation of the median heuristics mentioned in Section 3.3.
Then we sought the A minimizing D(T ,R1,R2), heuristically, along
all trajectories between all elements X ∈S′ and M(X).

5 COMPLEXITY
We prove that GGH for one outgroup under the breakpoint distance
dB is NP-hard, using a reduction from the Breakpoint Median
Problem. The latter is NP-hard, both for unichromosomal (Bryant,
1998) and multichromosomal genomes (E.Tannier, personal
communication).

We convert the breakpoint median problem on P, Q and R, three
diploid genomes with the same genes, into an instance of GGH:

• Construct genome P1 by appending superscript ‘1’ to the
symbol for each gene in genome P.

• Construct genome Q2 by appending superscript ‘2’ to the
symbol for each gene in genome Q.

• Let T =P1 ⊕Q2. We will treat T as a doubling descendant.
Superscripts ‘1’ and ‘2’ distinguish the two copies of a gene.

• Define an instance of GGH based on the doubling descendant
T and the diploid outgroup R.

We prove that the solution of GGH for genomes T and R is also the
solution of Breakpoint Median Problem on genomes P, Q and R:

Given any assignment of ‘1’ and ‘2’ superscripts to the pairs of
genes in T , a solution for GGH minimizes

B(T ,R)=dB(R,A)+dB(A′⊕A′′,T ). (3)

where A′ is a genome with one copy of each gene, labeled ‘1’ or
‘2’, and A′′ is the same as A′ with all the ‘1’ and ‘2’ superscripts
interchanged. A is the same genome without superscripts.

Lemma 1. If we construct genome A1 by appending superscript
‘1’ to each gene in genome A, and A2 by appending superscript ‘2’
to each gene in genome A, then

dB(A1 ⊕A2,T )=dB(A′⊕A′′,T ). (4)
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Proof. Genomes A′ and A′′ form a solution to GGH. The sum
dB(A′⊕A′′,T )+dB(A,R) is minimized. Therefore

dB(A′⊕A′′,T )+dB(A,R)≤dB(A,R)+dB(A1 ⊕A2,T ). (5)

Due to the construction of the genome T , each pair of adjacent
elements in T must have the same superscript. This implies that
for every adjacency that A′⊕A′′ has in common with genome T ,
the two adjacent terms must have same superscript too. Genome
A1 ⊕A2 contains all these common adjacencies, which implies

dB(A1 ⊕A2,T )≤dB(A′⊕A′′,T ). (6)

Thus dB(A1 ⊕A2,T )=dB(A′⊕A′′,T ). If A′ and A′′ form a solution
of GGH, then A1 and A2 also constitute a solution with the same
breakpoint distance. �

Lemma 2. The breakpoint distance dB(A1 ⊕A2,T )=dB(A,P)+
dB(A,Q).

Proof. We constructed T =P1 ⊕Q2. The adjacencies in common
between A1 ⊕A2 and T can be divided into two kinds:

• the common adjacencies between A1 and P1 and

• the common adjacencies between A2 and Q2.

Therefore dB(A1 ⊕A2,T )=dB(A1,P1)+dB(A2,Q2). Trivially,
i.e. by simply ignoring superscripts, dB(A1,P1)=dB(A,P) and
dB(A2,Q2)=dB(A,Q) �

Theorem 1. Genome A, the solution of GGH for T and C, is
also the solution of the Breakpoint Median Problem on genomes P,
Q and R.

Proof. From Lemma 2, dB(A1 ⊕A2,T )=dB(A,P)+dB(A,Q).
Thus

dB(A1 ⊕A2,T )+dB(A,R)=dB(A,P)+dB(A,Q)+dB(A,R). (7)

There cannot be any other genome A∗ such that
dB(A∗,P)+dB(A∗,Q)+dB(A∗,R)<dB(A,P)+dB(A,Q)+dB(A,R),
because this A∗ would then have the property that

dB(A1 ⊕A2,T )+dB(A,R)>dB(A∗
1 ⊕A∗

2,T )+dB(A∗,R), (8)

a contradiction. Therefore genome G is the solution of the
Breakpoint Median Problem on P, Q and R. �

Assuming the Breakpoint Median Problem for four genomes
L,P,Q and R were also NP-hard, although we are not aware of
any explicit proof, we could use the same method employed above
to show that GGH with two outgroups is hard under the dB distance.

We do not yet have corresponding proofs that GGH is NP-hard
under the rearrangement distance d, but this is almost certainly
the case since the breakpoint distance easier to compute than
rearrangement distance, even though they are both O(n). Note that
the Reversals Median Problem for three or more (unichromosomal)
genomes is NP-hard (Caprara, 2003).

6 THE NEW ALGORITHMS
The key idea in our improvement on the brute force algorithms is to
combine information from both T and the outgroups in constructing
the ancestor. It is important to take advantage of the common
structure in T and the outgroups as early as possible, before it can

be destroyed in the course of construction. To this end, we drop the
practice of completing all the gray edges in one supernatural graph
before starting another. We simply look for elements of common
structure and add gray edges accordingly, making sure at each step
that no circular chromosomes are inadvertently created. It is still
necessary to construct the supernatural graphs at the outset, both for
the check against circular chromosomes and for technical reasons
we omit here, having to do with chromosome ends.

Our approach requires only slight modifications from the context
of a single outgroup to that of two outgroups. For that reason, we
present a single algorithm for both, with the modifications for two
outgroups in square brackets. Indeed, this presentation is suggestive
of a generalization to three or more outgroups.

6.1 Paths
By ‘path’we mean any connected succession of black and gray edges
in a breakpoint graph, starting and terminating with a black edge.
We represent each path by an unordered pair (u,v)= (v,u) consisting
of its current endpoints, though we keep track of all its vertices and
edges. Initially, each black edge in T is a path, as is each black edge
in R [or in each of R1 and R2].

6.2 Pathgroups
A pathgroup � is an ordered triple [quadruple] of paths, two in T and
one in R [one each in outgroups R1 and R2], where one endpoint
of one of the paths in T is the duplicate of one endpoint of the
other path in T and both are orthologous to one of the endpoints of
the path in R [R1 and R2]. The other endpoints may be duplicates
or orthologs to each other, or not. For the special case where the
duplicates are end vertices, and the supernatural graph containing it
has four end nodes, then the members of a pair of duplicate dummies
must originate in different (odd length) natural graphs.

6.3 The algorithms
In adding pairs of gray edges to connect duplicate pairs of terms
in the breakpoint graph of T versus X ′⊕X ′′ (which is being
constructed) our approach is basically greedy, but with an important
look-ahead. We can distinguish six priority levels among potential
gray edges, i.e. potential adjacencies in the ancestor. Recall that in
constructing the ancestor X to be close to the outgroups, such that
X ′⊕X ′′ is simultaneously close to T , we must create as many cycles
as possible in the breakpoint graphs between X and the outgroups
and in the breakpoint graph of X ′⊕X ′′ versus T .

1. Adding two gray edges would create two cycles in the
breakpoint graph defined by T and X ′⊕X ′′, by closing two
paths, as on the top of Figure 3. When this possibility exists,
it must be realized, since it is an obligatory choice in any
genome halving algorithm. It may or may not create cycles in
the breakpoint graph comparison of X with the outgroups.

2. Adding two gray edges would create three cycles, one for T
and one for each of two outgroups.

3. Adding two gray edges would create two cycles, one for T
and one for one outgroup, as in the middle of Figure 3.

4. Adding two gray edges would create one cycle for T but none
for the outgroups. It would, however, create a higher priority
pathgroup, e.g., Figure 3, bottom.
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Fig. 3. Priority levels of some pathgroups for GGH with one outgroup.

5. Adding two gray edges would create a cycle in the T versus
X ′⊕X ′′ comparison, but none for the outgroups, nor would it
create any higher priority pathgroup.

6. Each remaining path terminates in duplicate terms, which
cannot be connected to form a cycle, since in X ′⊕X ′′
these must be on different (and identical) chromosomes. In
supernatural graphs containing such paths, there is always
another path and adding two gray edges between the endpoints
of the two paths can create a cycle.

In not completing each supernatural graph before moving on to
another, we lose the advantage in (El-Mabrouk and Sankoff, 2003)
of a constant time check against creating circular chromosomes. The
worst case becomes a linear time check. In practice, this is a small
liability, because the worst case scenario is seldom realized.

Algorithm GGH:
Guided Genome Halving with One [Two] Outgroups

Input. Two [three] genomes:
duplication descendant T , outgroup R [R1,R2].

Output. Genome X, a halving solution of T , minimizing
d(X ′⊕X ′′,T )+d(X,R)
[d(X ′⊕X ′′,T )+d(X,R1)+d(X,R2)].

Initialize paths (black edges) in T and R [in R1 and R2].
Construct supernatural graphs.
Construct two pathgroups for each gene g in R [in R1],

one based on gt , the other on gh.
If number of chromosomes in T is odd,

add pathgroup with two paths of form (end,end).
While there remains at least one pathgroup

For each pathgroup:
((x,y),(x̄,z),(x,m)), or [((x,y),(x̄,z),(x,m),(x,n))]
classify it by case and priority,

and find a pathgroup � that has the highest priority.
Case 1: x̄ �=y, and adding xy and x̄ȳ would not create a circular
chromosome.

Priority 1: z= ȳ.
[Priority 2: y=m=n.]
Priority 3: y=m [or y=n].
Priority 4: adding xy and x̄ȳ would create a pathgroup
with priority 2 or 3.
Priority 5: None of 1, [2], 3 or 4.

Case 2: x̄ �=y, and adding xz̄ and x̄z would not create a circular
chromosome.

[Priority 2: z=m=n.]
Priority 3: z=m [or z=n].
Priority 4: adding xz̄ and x̄z would create a pathgroup
with priority 2 or 3.
Priority 5: None of [2], 3 or 4.

Case 3:x̄=y.
Priority 6:

If � is Case 1, addGrayEdge(xy,x̄ȳ).
If � is Case 2, addGrayEdge(xz̄,x̄z).
If � is Case 3, find some

W = ((w,w̄),(w̄,w),(w,s)) or [((w,w̄),(w̄,w),(w,s)(w,t))]
in the same supernatural graph and addGrayEdge(xw,x̄w̄).

Algorithm: addGrayEdge(rt,r̄ t̄)
Add gray edges rt,r̄ t̄ to partially completed genome X ′′⊕X ′′.
Add gray edge rt to partially completed genome X.
Update paths in pathgroups that are affected by the new gray edges.
Remove pathgroups that start with r and t.

Once the GGH algorithm is terminated, we undertake the local
search described in Sections 4.1 and 4.2 to see if we can improve X
by allowing it to move out of S on a trajectory towards R.

7 GENOME DOUBLING IN YEAST
Wolfe and Shields (1997) discovered an ancient genome doubling in
the ancestry of S.cerevisiae in 1997 after this organism became the
first eukaryote to have its genome sequenced (Goffeau et al., 1996).
According to Kurtzman and Robnett (2003), the recently sequenced
C.glabrata (Dujon et al., 2004) shares this doubled ancestor. We
extracted data from YGOB (Yeast Genome Browser) (Byrne and
Wolfe, 2005), on the orders and orientation of the 600 genes (300
pairs) identified as duplicates in both genomes.

The YGOB (Byrne and Wolfe, 2005) contains complete gene
orders and orthology identification among the five yeast species
depicted in Figure 4: the two descendents of the above-mentioned
ancient genome duplication event, S.cerevisiae and C.glabrata,
and three species that diverged before this event, A.gossypii,
K.waltii and K.lactis. For the ancient tetraploids, YGOB includes
a reconstruction of the ancestral genome. We abbreviate these six
genomes as SC, CG, AG, KW, KL and A∗, respectively. In addition,
we construct an ancestral doubled descendant V lying on a shortest
rearrangement trajectory from SC to CG, satisfying the criterion that
its halving distance is minimal (Zheng et al., 2007b). We take the
ancestor A∗ as ‘ground truth’ and see how close we can approach it
using the sampling method and the guided halving method, with
various combinations of doubling descendants and unduplicated
genomes.
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8 RESULTS
Table 1 compares the results, before and after local optimization,
of the guided halving algorithm and the sampling approach on 12
pairs of genomes, the three doubling descendants SC, CG and V,
each versus the four unduplicated genomes AG, KL, KW and A∗.
Recall that V and A∗ are themselves analytical constructs, the former
representing the most recent common ancestor of SC and CG, and
the latter the ancestral genome at the moment of doubling.

The first observations are methodological. In all 12 cases guided
halving results in an X closer to R than in any of 2000 samples
of unrestricted halving. If computing time were no obstacle, the
sampling method would be exhaustive and exact, and hence always
at least as good as guided halving. The fact that none of the 12
analyses produced a ‘lucky’ sample as good as or better than GGH,
suggests that we would need a sample size of 25 000 at the very
least, and perhaps one or more orders of magnitude larger, to bring
the accuracy of sampling method to the level of guided halving, but

Fig. 4. Phylogeny of yeasts in YGOB. Whole genome doubling event
giving rise to ancestor of S.cerevisiae and C.glabrata indicated, followed
by rediploidization and speciation and the divergence of these two species.

this would require thousands of hours or more for our entire dataset
versus less than 30 min with guided halving.

The fact that the results of the sampling method are improved by
local searching, usually substantially, in all 12 cases, whereas guided
halving produces genomes already at or very close to a minimum
(albeit possibly local) of the objective function, is another measure
of the superior performance of the latter.

Note that aside from the three cases where the ground truth
ancestor A∗ plays the role of outgroup, this genome is not directly
involved in the analysis. It is of great interest, then, from the
biological viewpoint, that in all cases, guided halving produces
an ancestor A closer to A∗ than the sampling method. Moreover,
when using A∗ as an outgroup for the halving of SC, the analysis
reconstructs something very close to A∗, i.e. where d(A,A∗) is only 5.
This attests to the internal coherence of the method: the SC evidence
was predominant in the original construction of A∗ (Byrne and
Wolfe, 2005).

Turning to the case of two outgroups, we first point out that
the sampling approach becomes infeasible when even a moderate
number of analyses are undertaken. This is due to the relatively
lengthy time (sometimes more than 2 h) required to compute the
median cost, i.e., the sum of the three distances, from R1,R2 and the
inferred ancestor X, to the median. (The halving algorithm alone,
and even guided halving, never takes more than 2 or 3 min.) This
is not an obstacle to the guided halving method because the median
need to be calculated just once, instead of the thousands of times for
the sampling approach. Table 2 shows the result of halving guided
by two outgroups, using all combinations of two of AG, KL and KW
versus each of SC, CG and V.

In general, we note no advantage of using two outgroups over
one, in that d(A,A∗) with two outgroups is not as good as d(A,A∗)
for the better of the two used alone. The exception is the comparison
of KL and AG with V. Thus it seems, at least with these data,
that the more remote outgroup contributes little more than noise
to the reconstruction guided by the closer outgroup. This result

Table 1. Performance comparison of sampling method and guided halving algorithm in the case of one outgroup

Halving analysis Sampling method Guided halving
R−T 2n dt,x⊕x d̄x,r dmin da,r �A da,a∗ Time dx,r da,r �A da,a∗ Time

AG-CG 538 186 204 196 180 −16 156 37 153 153 0 120 2.3
AG-SC 1012 119 237 229 208 −21 53 158 184 183 −1 32 5.3
KL-CG 546 186 210 203 184 −19 154 50 160 160 0 120 3.5
KL-SC 1026 122 241 232 216 −16 51 140 197 197 0 39 6.1
KW-CG 542 188 247 238 230 −8 167 26 216 215 −1 142 3.3
KW-SC 994 121 364 355 350 −5 70 72 325 323 −2 41 5.1
A∗-CG 600 199 183 169 129 −40 129 81 84 84 0 84 1.5
A∗-SC 1062 124 79 70 37 −33 37 114 5 5 0 5 0.3
AG-V 576 61 157 151 149 −2 54 12 148 148 0 51 0.9
KL-V 584 62 167 160 158 −2 53 12 157 157 0 51 0.9
KW-V 582 62 224 218 215 −3 52 13 212 212 0 51 1.0
A∗-V 600 62 57 49 39 −10 39 14 29 29 0 29 0.2

Sample size 2000 for the sampling method. R−T represents the outgroup and doubling descendant. n is the number of genes available in that pair of genomes, with two copies in T .
dt,x⊕x =d(T,X ′⊕X ′′) is the doubling distance, constant over all analyses. d̄x,r =d̄(X,R) represents the average, over all samples, of the distance estimate between the ancestor, just
before doubling, and the outgroup, and the adjacent entry dmin =minsample d(X,R) is the minimum found. �A is the improvement over d(T,X ′⊕X ′′)+d(X,R) due to local searching,
allowing A to be found outside the set of halving solutions. da,a∗ =d(A,A∗) is the distance between the inferred ancestor and the ‘ground truth’. Time is measured in minutes, for
2000 samples of unrestricted halving or for one GGH run.
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Table 2. Results of guided halving algorithm in the case of two outgroups

R1−R2−T n d(T ,X ′⊕X ′′) Median cost d(T ,A′⊕A′′) Median cost �A d(A,A∗) Time

AG-KL-SC 497 117 364 117 361 −3 40 131
AG-KW-SC 478 116 502 116 498 −4 41 204
KL-KW-SC 471 121 518 121 516 −2 48 217
AG-KL-CG 265 183 300 183 297 −3 124 48
AG-KW-CG 261 184 362 184 361 −1 138 55
KL-KW-CG 259 184 368 184 366 −2 136 62
AG-KL-V 283 61 278 61 275 −3 47 38
AG-KW-V 280 61 340 62 339 0 51 41
KL-KW-V 277 62 354 62 352 −2 54 54

Median cost refers to the sum of the three distances, from R1,R2 and the inferred ancestor X or A, to the median. The objective is d(T ,X ′ ⊕X ′′)+median cost. �A is the improvement
of d(T,A⊕A)+median cost over d(T,X ′ ⊕X ′′)+median cost due to local searching, allowing A to move outside the set of halving solutions. Time in minutes.

Fig. 5. First three dimensions of principal coordinate analysis of distances among 22 inferences of ancestral genome, based on different configurations of
outgroups. Left: dimensions 1 and 2. Right dimensions 1 and 3. Dimension labels assigned subjectively after the analysis. Genomes SC, CG, AG, KL and KW
further abbreviated in displays to S, G, A (not to be confused with A for ancestor elsewhere in the text, nor with A∗), L and W, respectively.

may be due to the great discrepancy in the phylogenetic divergence
between the doubled genomes and KW compared to the divergence
between the former and AG or KL, and may not carry over to other
datasets.

Two observations: first, the improvement due to local search
is relatively small, though larger than guided halving with one
outgroup. Second, though our analyses did find some A outside of
S that minimized D(T ,R1,R2), in each such case there was also a
solution (the one entered in Table 2) with A∈S.

To investigate to what extent differences between the doubling
descendants and among the outgroups are reflected in the
reconstructed ancestor genome A, we undertook Gower’s principal
coordinates analysis (Gower, 1966) of the 21 versions of A described
in Tables 1 and 2, as well as A∗ itself. We used the implementation
of this analysis available as cmdscale in the R environment (R
Development Core Team, 2007), applied to the 22 genomic distance
matrix.

Figure 5 depicts the results of a 3D principal coordinates
analysis. We note first that the first two dimensions basically
distinguish among the doubling descendants, first classifying SC
and V together versus CG, and then distinguishing between SC
and V. The third dimension distinguishes between the genomes in
which KW was the outgroup and those in which only AG and/or
KL were outgroups. As we would expect, all the genomes with
A∗ as the outgroup or as one of two outgroups, are closer to the
‘true’ ancestor A∗ than when some other outgroup is used instead.
Nevertheless, other outgroups, such as AG, also help guide the
reconstruction to fairly close approximations of A∗. On the other
hand, constructions guided by CG are all very far from A∗, and
those involving KW tend to be somewhat farther than those guided
by AG and KL. The latter observation is consistent with the known
highly rearranged nature of CG, and with the relatively distant
evolutionary relationship between KW and A∗, as can be seen in
Figure 4.
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9 DISCUSSION
We have focused on the two main concerns of genome halving,
the multiplicity and the diversity of solutions, and the difficulty
of assessing the accuracy of the results with real data. GGH was
previously shown to drastically reduce the non-uniqueness inherent
in unrestricted halving. This is carried further by GGH, which
achieves much greater accuracy with much less computational effort.

An important indication of the precision of the reconstruction is
its ability with some of the data to come very close to the manually
reconstructed ancestor A.

Nevertheless, these results remind us of the uncertainties inherent
in historical reconstruction. Some of this is possibly due to the ‘noise’
of mistaken paralogy identification, especially in highly rearranged
genomes such as C.glabrata. Future work will attempt to attenuate
this noise using the techniques of Zheng et al. (2007a) and Choi
et al. (2007).

The significance of halving results depends on what proportion
of the doubling descendant T is and can be identified as duplicated
genes. Our analysis does not attempt to situate the ancestors of genes
present in only one copy in T , and these will often form the majority.
Ongoing work exploits the syntenic relationships between these
genes, the duplicated ones, and their orthologs in the outgroups.
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