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We develop criteria to detect neighborhood selection effects on gene loss following
whole genome duplication, and apply them to the recently sequenced poplar (Popu-

lus trichocarpa) genome. We improve on guided genome halving algorithms so that
several thousand gene sets, each containing two paralogs in the descendant T of the
doubling event and their single ortholog from an undoubled reference genome R, can
be analyzed to reconstruct the ancestor A of T at the time of doubling. At the same
time, large numbers of defective gene sets, either missing one paralog from T or miss-
ing their ortholog in R, may be incorporated into the analysis in a consistent way. We
apply this genomic rearrangement distance-based approach to the poplar and grapevine
(Vitis vinifera) genomes, as T and R respectively. We conclude that, after chromosome
doubling, the “choice” of which paralogous gene pairs will lose copies is random, but
that the retention of strings of single-copy genes on one chromosome versus the other is
decidedly non-random.

Keywords: Whole genome duplication; genome rearrangement; genome halving; Populus
trichocarpa; Vitis vinifera.

1. Introduction

Following an episode of whole genome doubling (WGD), gene duplicates are lost at
a high rate through processes such as pseudogenization and deletion of chromosomal
segments containing one or more genes, while intra- and inter-chromosomal rear-
rangement mechanisms redistribute chromosomal segments, both large and small,
across the genome. The genome of the present-day descendant can be largely decom-
posed into a set of duplicated DNA segments dispersed among the chromosomes,
with all the duplicated pairs exhibiting a similar degree of sequence divergence,
and with single-copy segments interspersed among them. In this paper, we intro-
duce approaches to analyzing the evolution of doubled genomes, based entirely on
gene order evidence, in order to explain aspects of the gene loss process and to
reconstruct the rearrangement steps leading from the doubled ancestral genome to
the present day descendant.

Though syntenic evidence, namely duplicated segments containing several genes
in corresponding order, has long been used for WGD, studies of duplicate gene loss
have focused on functional changes and divergence rates within individual gene
families, to the exclusion of gene order considerations. Here we investigate how the
fate of duplicate genes is correlated, or not, to the retention or loss of nearby genes
on the same chromosomes.

As for reconstructing rearrangement history, a linear-time “genome halving”
algorithm, based only on the ordering of duplicated chromosomal segments, can
find an ancestral genome that minimizes the genomic distance to the present-day
genome.1,2 This does not suffice, however, as a solution to the reconstruction prob-
lem, since there may be a large number of very different, equally optimal solu-
tions. Here we use a guided genome halving (GGH) strategy to overcome this non-
uniqueness, guiding the reconstruction of the ancestor by one or more reference, or
outgroup, genomes. This strategy does not sacrifice the optimality of the halving
solution.

The flowering plants are well known for numerous historical events of genome
doubling.3 The recently sequenced poplar genome (Populus trichocarpa),4 which
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shows very clear evidence of genome duplication 60 to 65 million years ago,
and the grapevine genome (Vitis vinifera),5 ,6 whose ancestor diverged before the
aforementioned duplication, provide a pair of analytical incentives to the GGH
strategy. On the one hand, the poplar data have an order of magnitude more dupli-
cated elements than that previously analyzed, straining computational resources.
On the other hand, the richness of the data allows us to assess neighborhood selec-
tion effects on duplicate gene loss and the implications of this loss of genes from
thousands of duplicated pairs on the accuracy of ancestral genome reconstruction.

This paper thus contributes three advances on the methodological level: first,
a way of analyzing chromosomal neighborhood selection effects on the retention or
loss of duplicated genes; second, the scaling up, by more than an order of magnitude,
of the amount of data amenable to our GGH analysis; and third, the incorporation
into GGH of data from gene duplicate pairs that have lost one member, making
use of chromosomal context in both the genome that can be traced to the doubling
event and in the outgroup.

1.1. Outline

In Sec. 2, we describe the sources for our data and how we processed them to obtain
the gene sets for the selection study and the GGH analysis. In Sec. 3, we present
our method and results for detection of neighborhood selection effects. In Sec. 4,
we sketch the necessary background about genomic rearrangement distance and
the genome halving and GGH algorithms. In Sec. 5, we present the GGH algorithm
incorporating both full and defective gene sets. We apply this method to the full
gene sets in combination with one or both of two defective gene sets from Populus
and Vitis in Sec. 6. We present the reconstructed undoubled Populus ancestor based
on over 6000 gene sets and evaluate the evolutionary signal versus noise (a) in the
ancestor-Populus and ancestor-Vitis comparisons, (b) in the full and defective gene
sets, and (c) in genes with two or three common adjacencies in the data and those
with weaker positional evidence.

2. The Populus–Vitis Comparison

Annotations for the Populus and Vitis genomes were obtained from databases
maintained by the U.S. Department of Energy’s Joint Genome Institute4 and
the French National Sequencing Center, Genoscope,6 respectively. An all-by-all
BLASTP search was run on a dataset including all Populus and Vitis protein cod-
ing genes, and orthoMCL7 was used to construct 2104 full and 4040 defective gene
sets, in the first case containing two poplar paralogs (genome T ) and one grape
ortholog (genome R), and in the second case missing a copy from either T or R.
The chromosomal location and orientation of these paralogs and orthologs was used
to construct our database of gene orders for these genomes, and the input to the
GGH algorithm. In addition, 740 Populus single-copy genes with known chromoso-
mal location but with no orthology detected in Vitis were added for the study of
neighborhood selection effects.
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3. Neighborhood Effects

The data include 3944 single-copy genes with or without orthologs in Vitis. We
assume that the single-copy status of most of these genes is simply a consequence
of the loss of their duplicates following WGD, either through pseudogenization,
outright deletion or other process, though of course there may be a small proportion
with other explanations.

We may ask how the process of gene loss is distributed throughout the genome.
In particular,

• is there any spatial non-randomness in the choice of duplicate pairs that will
become single-copy? Are such pairs clustered together or randomly spaced in the
genome?

• for any cluster of neighbouring gene pairs that becomes single-copy, do the
remaining copies tend to reside on the same chromosome, or does each pair of
duplicates “decide” independently from its neighbors which chromosome keeps
the gene and which loses it?

3.1. Choice of pairs to become single-copy

One difficulty in addressing these problems is that we do not know which genes in
the present-day genome are neighbors because they have always been neighbors,
and which have become neighbors recently, for example through chromosomal rear-
rangement operations, and this is especially problematic for single-copy genes.

To circumvent this problem, we consider only sets of single-copy genes bounded
at both ends by a pair of duplicate genes on the same two chromosomes, as in
Fig. 1. Such a configuration, which we take as our basic unit of analysis, can arise
only infrequently by rearrangement, especially if the genome contains more than a
handful of different chromosomes. The unlikeliness of these units arising by chance
rearrangement explains why it suffices to take only one flanking pair of duplicates at
either end, and why we need not be more stringent and ask for two such consecutive
pairs at either end, with the consequent loss of valuable data for our analysis. We

o o o o o o o o o o o o chr. 1

o o o o o o o o o o o o chr. 2

d d s d d d d s d s s d

0 1 0 0 0 1 2

units of analysis

Fig. 1. Analytical units for the study of single-copy genes. Black circles represent existing genes,
gray circles represent hypothesized lost genes. d = duplicate gene pair, s = single-copy remaining.
Numbers indicate length of string in which one member of each pair had been lost.
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assume that the single-copy status of all the intervening genes, on one or the other
of the two chromosomes, arose through the loss of one copy from a corresponding
position on the other chromosome. Note that these sets of single-copy genes are
not “paralogons”, since the genes are distributed on two chromosomes, although by
hypothesis they are descended from two paralogons, which are duplicate regions on
the two chromosomes.

Thus, the statistic we investigate is the frequency of the number of single-copy
genes, on one chromosome or the other, between any two consecutive pairs of dupli-
cate genes. Were the process of gene loss independent across two chromosomes of an
artificial genome consisting of all the currently conserved duplicated genes (count-
ing a pair only once if it is both at the end of one analytical unit and the beginning
of another, e.g. the penultimate d in Fig. 1), plus two copies of the currently single-
copy genes, we can predict this frequency distribution. Let n be the total number
of duplicated pairs in this artificial construct. Then after S random selections of
pairs from {1, . . . , n}, with replacement but with only the first selection of any
one pair resulting in a conversion to single-copy status, the probability that any
particular duplicate pair A be conserved is (1 − 1

n )S and the probability that the
run of m pairs following A have been converted to single-copy status, followed by
a conserved duplicate pair B, is thus (1 − 1

n )2S
(
1 − (1 − 1

n )S
)m, as long as A is in

the first n− (m+ 1) positions in the genome.
Then E[f(m)], the expected number of single-copy strings of length m, after S

samples is

(n−m− 1)
(

1 − 1
n

)2S
(

1 −
(

1 − 1
n

)S
)m

. (1)

Requiring the predicted proportion of single-copy genes 1− (1− 1
n )S to be equal

to the observed proportion r
n , it leads to the predicted frequency:

(n−m− 1)
(
1 − r

n

)2 ( r
n

)m

. (2)

Comparing the predicted versus the observed frequency of single-copy unit of
various sizes, as in Fig. 2, makes it clear that the null hypothesis of random choice of
which duplicate pairs to convert to single-copy status would be difficult to dispute.

3.2. Concentration of single-copies on one chromosome

There remains, however, the second type of neighborhood selection we have men-
tioned, i.e. once a pair of duplicates is changed to single-copy status, is there an
influence from neighboring genes on which copy is to be lost and which to be
retained? Under the hypothesis of no neighbor effects, configurations like those on
the right of Fig. 3, where both retained copies are on the same chromosome, should
occur half of the time. Similarly for all m, we can calculate the probability that
exactly q out of m genes occur on the same chromosome and m− q on the other is
B(m, q) +B(m,m− q), for q = 0, . . . , �m

2 �, where B is the binomial distribution.
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Fig. 2. Congruence of predicted versus observed lengths of strings of single-copy genes.
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Fig. 3. Single-copy gene evidence for neighborhood selection. Black circles represent existing genes,
gray circles represent hypothesized lost genes. d = duplicate gene pair, s = single-copy remaining.
In the unit on the right, neighbors are conserved, on the left one gene is dropped from each
chromosome.

The cumulative probability that q or fewer single-copy genes, out of m, will
appear on the same chromosome is Prm(q) =

∑q
i=0 B(m, i) + B(m − q), for

q = 0, . . . , �m
2 �. Plotting Frm(q), the observed cumulative relative frequency of

q against this prediction Prm(q) should help us decide if the null hypothesis of
randomness is justified. We use the cumulative distributions rather than the proba-
bility and relative frequency distributions themselves in order to combine the results
for different values of m. Thus, in Fig. 4 we superimpose plots of Frm(q) against
Prm(q), for m = 2, . . . , 8 and for q = 0, . . . , �m

2 �. There should be 23 points on such
a plot, but seven of them are necessarily coincidental at (1, 1).
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Fig. 4. Observed cumulative relative frequency against predicted values, for q or fewer single-copy
genes, out of m, to appear on the same chromosome, for m = 2, . . . , 8 and for q = 0, . . . , �m

2
�.

There should be 23 points on such a plot, but seven of them are necessarily coincidental at (1, 1).

The plausible alternative hypotheses are (a) a widespread neighborhood selec-
tion effect, possibly at the transcriptional level, perhaps involving co-regulation or
common regulatory elements, or (b) deletion-based effect whereby gene loss involves
a chromosomal segment, affecting more than one gene at a time. The latter is per-
haps the simplest and most obvious choice, unless pseudogenization is the usual
avenue to gene loss, and has been proposed in the context of gene loss after WGD
in yeast.8 Though selection-based explanations have been offered by other authors,9

our own method (work to be reported elsewhere) yields even stronger support for
selection than the poplar work reported here, rather than random large deletions.
Under the null hypothesis, there is no reason for there to be more points above the
diagonal than below it, and the particular concentration of points where Frm(q) is
much greater than Prm(q) and Prm(q) < 1

3 suggests that the low values of q, where
almost all the single-copy genes in each analytical unit are on the same chromosome,
are greatly over-represented in these data.

With the poplar data, were random deletions involving segments larger than one
gene, a quantitatively important explanation for the results in Fig. 4, this would
necessarily also show up as deviation from the smooth geometric distribution in
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Fig. 2, with a depressed value for m = 1 relative to increased values for at least
m = 2 or higher m. This is emphatically not the case, and we can thus reject the
large deletions theory in favour of a neighborhood selection effect.

3.3. Long strings of single-copies

Along with the data summarized in Figs. 3 and 4, we also found four analytical
units with relatively long strings of single-copies. These occurred in analytical units
on chromosome pair (6,18), with 12 genes on chromosome 18 and only 2 on chro-
mosome 6, chromosome pair (2,14), with 12 genes on chromosome 14 and only 3 on
chromosome 2, chromosome pair (13,19), with 15 genes on chromosome 13 and none
on chromosome 19, and chromosome pair (8,10), with 16 genes on chromosome 10
and only 1 on chromosome 8.

These data provide additional striking confirmation of the tendency for single-
copy genes to be largely on the same chromosome. The occasional instance of an
active gene on the other chromosome is validation of our operational definition of
an analytical unit: the surviving duplicate pairs delimiting either end of the single-
copy segment did not get there through coincidental rearrangements, rather they
define what remains of a genuine duplicated segment.

The extraordinary length of each of these four strings of single-copy genes
remains unexplained, though functional selection effect is strongly suggested in
several cases. For example, in the (2,14) pair and the (13,19) pair, about half of
the genes also appear in a (single) cluster in the Arabidopsis genome. The genes
in the (8,10) pair are almost evenly split between two such clusters in Arabidopsis.
This suggests that the genes in question have a function-driven tendency to group
together in a single-copy segment, a tendency which has survived separate WGD
events in both Populus and Arabidopsis. This idea has recently been explored for
yeast.10

Moreover, GO functional annotations show that four of the genes on chromo-
some 10 have nucleic acid or nucleotide binding capacity and three of the genes on
chromosome 14 have hydrolase activity, in both cases more than could be expected
by coincidence, and suggestive of some concerted functional connection favored by
the close linkage of these genes.

3.4. The units of analysis

It is only in the context of WGD that we can set up the analytical units that enable
our assessment of the presence of neighborhood selection in Secs. 3.1, 3.2 and 3.3
above, though these effects would exist of course whatever the source of duplicate
gene pairs, and indeed in any process of genome shrinkage through gene loss.

4. Toward Efficient, Accurate Guided Genome Halving

Algorithms for guided genome halving (GGH), or reconstruction of the pre-doubling
genome with the help of an outgroup, were first used for the ancestral doubled
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genome of the maize (Zea mays), with the rice (Oryza sativa) and sorghum
(Sorghum bicolor) genomes as outgroups.11 We generated all the 1.5 × 106 solu-
tions to the genome halving problem for the maize genome, and then identified
the subset, containing only a handful of relatively similar solutions that have a
minimum rearrangement distance with the rice (or sorghum) genome.

This approach was feasible with the small number (34) of doubled blocks iden-
tified in maize that were also present in one copy in each outgroup, but in a sub-
sequent analysis,12 when we attempted to reconstruct the ancient doubled yeast
genome from which Saccharomyces cerevisiae is descended, guided simultaneously
by both of the undoubled outgroup genomes Ashbya gossypii and Kluyveromyces
waltii, the number of doubled genes we could use as evidence was an order of mag-
nitude greater than the number of blocks in the cereals data, and the number of
solutions to the halving problem is astronomical. It was no longer feasible to exhaus-
tively search the halving solutions to find those that are closest to the outgroups.
Instead we took a random sample of several thousand solutions in the hope that the
best one might be optimal, or close to it. It was not clear, however, how large the
sample should be, or how to validate the results, since the local optima found in that
study remained fairly far apart, as measured by genomic rearrangement distance.

In our current use of GGH, on yeast13 and on the flowering plants studied in the
present article, we seek to replace the brute force approach of generating all (or a
random sample of) halving solutions first, i.e. before taking into consideration the
outgroup genome. Instead, we inject all pertinent information derivable from the
outgroup into the halving algorithm, influencing hitherto arbitrary choices in that
algorithm so that the halving solution is guided towards the outgroup.

4.1. Definitions: Genomes, rearrangement operations and

genomic distance

A genome G is represented by a set of strings (called chromosomes) of form
{g11 . . . g1n1 , . . . , gχ1 . . . gχnχ}, where n = n1 + · · ·+nχ and {|g..|} = {1, . . . , n}; i.e.
each integer i ∈ {1, . . . , n} appears exactly once in the genome and may have either
positive or negative polarity. The biologically-motivated operations of reversal or
inversion, reciprocal translocation, chromosome fission or fusion, and transposition,
can all be represented by an operation (called double-cut and join, or DCJ) of cut-
ting the genome twice, each time between two elements on one of the chromosomes
and rejoining the four resulting cut ends differently.14,15 Whether the two cuts are
on the same chromosome or not, and how the endpoints are rejoined, determine
which rearrangement operation pertains.

The genome rearrangement distance d(G,H) is defined to be the minimum
number of DCJ operations required to convert one of the genomes, G, into the
other, H .

Rearrangement algorithms14,16,17 can be formulated in terms of the bi-colored
“breakpoint graph”, where each end (either 5′ or 3′) of a gene in genome G is
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represented by a vertex joined by a black edge to the vertex for adjoining end of
the adjacent gene, and these same ends, represented by the same 2n vertices in the
graph, are joined by gray edges determined by the adjacencies in genome H . In
addition, each vertex representing a first or last term of some chromosome in G or
in H is connected by an edge of the appropriate color to an individual “cap” vertex,
and there are specific rules for adding caps to the genome with fewer chromosomes
and for joining the caps among themselves. If G has χ chromosomes and H has no
more than χ, there are 2n + 4χ vertices in all. The breakpoint graphs necessarily
consist of disjoint alternating color cycles, and it can be shown that, in the DCJ
formulation, d(G,H) = n+χ− c, where c is the number of cycles in the breakpoint
graph. Calculation of the distance can be done in time that is linear in n.

4.2. Genome halving

Let T be a genome consisting of ψ chromosomes and 2n genes a
(1)
1 , . . . , a

(1)
n ;

a
(2)
1 , . . . , a

(2)
n , dispersed in any order on the chromosomes. For each i, we call a(1)

i

and a(2)
i “duplicates”, but there is no particular property distinguishing all elements

of the set of a(1)
i in common from all those in the set of a(2)

i . A potential “doubled
ancestor” of T is written as A′ ⊕A′′, and consists of 2χ chromosomes, where some
half (χ) of the chromosomes, symbolized by the A′, contains exactly one of a(1)

i or
a
(2)
i for each i = 1, . . . , n. The remaining χ chromosomes, symbolized by the A′′, are

each identical to one in the first half, in that where a(1)
i appears on a chromosome in

the A′, a(2)
i appears on the corresponding chromosome inA′′, and where a(2)

i appears
in A′, a(1)

i appears in A′′. We define A to be either of the two halves of A′ ⊕ A′′,
where the superscript (1) or (2) is suppressed from each a

(1)
i or a(2)

i . The genome
halving problem for T is to find an A for which some d(A′ ⊕A′′, T ) is minimal.

In the rearrangement distance algorithm, construction of the breakpoint graph
is an easy step. The genome halving algorithms2 also make use of the breakpoint
graph, but the problem here is the more difficult one of building the breakpoint
graph where one of the genomes (the doubled ancestor A′ ⊕A′′) is unknown. This
is done by segregating the vertices of the graph in a natural way into subsets,
such that all the vertices of each cycles must fall within a single subset, and then
constructing these cycles in an optimal way within each subset so that the black
edges correspond to the structure of the known genome T and the gray edges define
the adjacencies of A′ ⊕A′′.

As a first step, each gene a in a doubled descendant is replaced by a pair of
vertices (at, ah) or (ah, at) depending if the DNA is read from left to right or right
to left. The duplicate of gene a = (at, ah) is written as ā = (āt, āh).

Following this, for each pair of neighboring genes, say (at, ah) and (bh, bt), the
two adjacent vertices ah and bh are linked by a black edge, denoted by {ah, bh} in
the notation of Ref. 15. For a vertex at the end of a chromosome, say bt, it generates
a virtual edge of form {bt, end}. Note that the use of “end” instead of “cap” reflects
a somewhat different bookkeeping for the beginnings and ends of chromosome in
the halving algorithm compared to the distance algorithm in Sec. 4.1.
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The edges thus constructed are then partitioned into natural graphs according
to the following principle: If an edge {x, y} belongs to a natural graph, then so
does some edge of form {x̄, z} and some edge of form {ȳ, w}. If a natural graph
has an even number of edges, it can be shown that in all optimal ancestral doubled
genomes, the edges colored gray, say, representing adjacent vertices in the ancestor,
and incident to one of the vertices in this natural graph, necessarily have as their
other endpoint another vertex within the same natural graph.

For all other natural graphs, there are one or more ways of grouping them
pairwise into supernatural graphs so that an optimal doubled ancestor exists such
that the edges colored gray incident to any of the vertices in a supernatural graph
have as their other endpoint another vertex within the same supernatural graph.
Thus the supernatural graph may be completed one at a time.

An important detail in this construction is that before a gray edge is added
during the completion of a supernatural graph, it must be checked to see that it
would not inadvertently result in a circular chromosome. The key to the linear
worst-case complexity of the halving algorithm is that this check may be made in
constant time.

Along with the multiplicity of solutions caused by different possible construc-
tions of supernatural graphs, within such graphs and within the natural graphs,
there may be many ways of drawing the gray edges. Without repeating here the
lengthy details of the halving algorithm, it suffices to note that these alternate ways
can be generated by choosing one of the vertices within each supernatural graph as
a starting point.

4.3. Genome halving with outgroups

Let T be a genome consisting of ψ chromosomes and 2n genes a
(1)
1 , . . . ,

a
(1)
n ; a(2)

1 , . . . , a
(2)
n , dispersed in any order on the chromosomes, where for each i,

genes a(1)
i and a(2)

i are duplicates. Any genome R is a reference or outgroup genome
for T if it contains the n genes a1, . . . , an.

Let R be a reference genome for T . The GGH problem with one outgroup is
to find a potential ancestral genome A such that some d(R,A) + d(A′ ⊕ A′′, T ) is
minimal. In practice, A is either one of the solutions to the unconstrained halving
problem, or it is close to such a solution,18 so little is lost in restricting our search
to the set of solutions of the genome halving problem for T .

One strategy, suitable for small datasets, as in Ref. 11, is to generate the entire
set S of genome halving solutions of T , then to evaluate each A ∈ S to find the one
that minimizes d(R,A).

When S is so large that it is not feasible to generate all of S in order to find
the best A, we may resort to sampling S, as in Ref. 12. In defining the gray edges
in the supernatural graphs of Sec. 4.2, we generally have several choices at some of
the steps. By randomizing this choice, we are effectively choosing a random sample
of X ∈ S.
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5. The GGH Algorithm

The key idea in our improvement over brute force algorithms is to incorporate
information from R during the halving process. It is important to take advantage
of the common structure in T and R as early as possible, before it can be destroyed
in the course of construction. To this end, we drop the practice of completing all
the gray edges in one supernatural graph before starting another. We simply look
for elements of common structure and add gray edges accordingly, always making
sure that no circular chromosomes are inadvertently created.

Missing homologs. The halving algorithm requires full gene sets at several steps
in reconstructing the ancestor, so we algorithmically restore the missing homologs
to the most appropriate positions in T and R at the outset. The criterion for restor-
ing a gene to a position in a genome is the net decrease in the number of disrupted
adjacencies in the three-way comparison of the augmented genomes versus the sit-
uation before the gene was restored. Note that the fictional genes thus included do
not count in the main GGH algorithm when it comes to choosing among steps of
equal priority.

Paths. We define a path to be any connected fragment of a breakpoint graph,
namely any connected fragment of a cycle. We represent each path by an unordered
pair (u, v) = (v, u) consisting of its current endpoints, though we keep track of all
its vertices and edges. Initially, each black edge in T is a path, and each black edge
in R is a path.

Pathgroups. A pathgroup Γ is an ordered triple of paths, two in T and one in R,
where one endpoint of one of the paths in T is the duplicate of one endpoint of the
other path in T , and both are orthologous to one of the endpoints of the path in
R. The other endpoints may be duplicates or orthologs to each other, or not.

5.1. The algorithms

In adding pairs of gray edges to connect duplicate pairs of terms in the breakpoint
graph of T versus A′ ⊕ A′′ (which is being constructed), our approach is basically
greedy, but with a sophisticated look-ahead. We can distinguish five different levels
of desirability, or priority, among potential gray edges, i.e. potential adjacencies in
the ancestor.

Recall that in constructing the ancestor A to be close to the outgroup R, such
that A′⊕A′′ is simultaneously close to T , we must create as many cycles as possible
in the breakpoint graphs between A and R and in the breakpoint graph of A′ ⊕A′′

versus T .

(1) Adding two gray edges would create two cycles in the breakpoint graph defined
by T and A′ ⊕ A′′, by closing two paths. When this possibility exists, it must
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be realized, since it is an obligatory choice in any genome halving algorithm.
It may or may not also create cycles in the breakpoint graph comparison of X
with the outgroup, but this does not affect its priority.

(2) Adding two gray edges would create two cycles, one for T and one for the
outgroup.

(3) Adding two gray edges would create a cycle in the T versus A′ ⊕ A′′ compar-
ison, but none for the outgroup. It would, however, create a higher priority
pathgroup.

(4) Adding two gray edges would create a cycle in the T versus A′⊕A′′ comparison,
but none for the outgroup, nor would it create any higher priority pathgroup.

(5) Each remaining path terminates in duplicate terms, which cannot be connected
to form a cycle, since in A′ ⊕ A′′ these must be on different (and identical)
chromosomes. In supernatural graphs containing such paths, there is always
another path and adding two gray edges between the endpoints of the two
paths can create a cycle.

In not completing each supernatural graph before moving on to another, we lose the
advantage in Ref. 2 of a constant time check against creating circular chromosomes.
The worst case becomes a linear time check. This is a small liability, because the
worst case scenario is seldom realized, the check almost always requiring only one
or two steps.

6. GGH Results and Discussion

Our data consisted of 6144 gene sets, of which only 2104 were full sets. There were
only 836 defective sets by virtue of a missing ortholog in R, while 3204 genes lacked
one paralog in T .

Table 1 shows the results of the analysis on the full gene sets only, on combi-
nations of the full sets with one kind of defective sets, and all three sets. For each
case we study not only the reconstructed ancestor but also a “projected” version
where genes from the defective sets are simply erased, in order to assess the changes
in gene order due to the defective gene sets. Whereas the distance between each
T and its reconstructed ancestor A is given by GGH, the distance between pro-
jected ancestor and T required a heuristic, explained in detail in Refs. 19 and 20,
for attributing each paralog in T to one of the two copies of the ancestral genome.
Note that we choose only one optimal ancestor A for each analysis; this does not
affect d for the comparison between A⊕A and Populus, but it may have a very
small effect on b, and r and on all three quantities for the comparison between A

and Vitis.
Figure 5 depicts the result of analyzing all the 6144 gene sets with GGH,

although the 836 genes with no grape orthologs are not visible. This is just one
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Table 1. Comparisons of the reconstructed immediate pre-doubling
ancestor A with the Vitis genome and of the immediate doubled ances-
tor A ⊕ A with Populus.

d (A, V itis) d (A ⊕ A, Populus)
Genes

Data sets in A d b r d b r

PPV 2104 638 751 1.70 454 690 1.32
PPV, PP 2940 649 757 1.71 737 1090 1.35
projected 2104 649 757 1.71 581 823 1.41
PPV, PV 5308 1180 1331 1.77 1083 1457 1.49
projected 2104 663 758 1.75 670 833 1.61
PPV, PP, PV 6144 1208 1363 1.77 1337 1812 1.48
projected 2104 664 757 1.75 750 926 1.62

without singletons
PPV 2020 560 661 1.69 346 541 1.28
PPV, PP 2729 594 690 1.72 453 714 1.27
projected 2006 571 664 1.72 416 628 1.32
PPV, PV 4203 573 686 1.67 751 1031 1.46
projected 1955 489 580 1.69 490 644 1.52
PPV, PP, PV 4710 675 797 1.69 856 1211 1.41
projected 1986 528 622 1.70 558 744 1.50

PPV: full gene sets, PP: defective, missing grape ortholog, PV: defec-
tive, missing one poplar paralog. Projected: genes not in PPV ancestor
deleted from solution A, d: genomic distance, b: number of breakpoints,
r = 2d/b: the re-use statistic.

of many equally parsimonious solutions of the GGH problem, differing largely in
how they concatenate chromosomal segments where there are two different possi-
bilities suggested by the Populus genome and a third by the Vitis genome. The
reconstruction is given as an example, and the details, including the telomeric posi-
tions determining the size of the chromosomes, are not definitive.

Despite this ambiguity in the reconstruction, the numerical results on d, b and r
are quite robust, and can be used for the comparison of genomes and for evaluating
methods.

The large number of singleton genes disrupting otherwise homogeneous synteny-
blocks suggests that “noise” due to uncertainties inherent in homology identifica-
tion and especially orthology identification may be artifactually inflating genomic
distance d and the number of breakpoints b. Since the rigorous noise elimination
techniques of Refs. 21 and 22, which are the gene-order equivalent of synteny block
construction methods for genome sequences, have not yet been extended in the con-
text of genome doubling, we simply identified singletons as gene sets lacking two
real (i.e. not inferred from insertMH; see algorithm below) common adjacencies
out of six possible cases in the original genomes, and ran all the analyses again
without these genes.
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In each case, we counted the breakpoints and calculated the appropriate genomic
distance d, i.e. from the doubled ancestor to Populus and from the undoubled ver-
sion of the same ancestor to Vitis.

Algorithm: GGH
Guided Genome Halving with Full and Defective Gene Sets

Input. Two genomes: duplication descendant T ′, outgroup genome R′, where
each gene has three homologs (full set) or two homologs (defective set), in the
patterns TTR, TT or TR.

Output. Augmented genomes T , and R, where all gene sets are full, and
Genome A, a halving solution of T , minimizing d(A′ ⊕A′′, T ) + d(A,R).

insertMH
Initialize paths (black edges) in T and R.
Construct supernatural graphs.
Construct two pathgroups for each gene g in R, one based on gt, the other

on gh.
If number of chromosomes in T is odd,

add pathgroup with two paths of form (end, end).
While there remains at least one pathgroup

For each pathgroup ((x, y), (x̄, z), (x,m))
classify it by case and priority, and find a pathgroup Γ that has the highest
priority. To choose among Priority 2 pathgroups, find one that maximizes the
number of “real” black edges, i.e. edges in T ′ and R′, not just edges created by
insertMH. Similarly for Priority 3 pathgroups.
Case 1: x̄ �= y, and adding xy and x̄ȳ would not create a circular chromosome.

Priority 1: z = ȳ.
Priority 2: y = m.
Priority 3: adding xy and x̄ȳ would create a pathgroup with priority 2.
Priority 4: None of 1, 2 or 3.

Case 2: x̄ �= y, and adding xz̄ and x̄z would not create a circular chromosome.
Priority 2: z = m.
Priority 3: adding xz̄ and x̄z would create a pathgroup with priority 2.
Priority 4: Neither of 2 or 3.

Case 3:x̄ = y.
Priority 5:

If Γ is Case 1, addGrayEdge(xy, x̄ȳ).
If Γ is Case 2, addGrayEdge(xz̄, x̄z).
If Γ is Case 3, find some
W = ((w, w̄), (w̄, w), (w, s)) in the same supernatural graph and
addGrayEdge(xw, x̄w̄).
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Algorithm: addGrayEdge(rt, r̄t̄)

Add gray edges rt, r̄t̄ to partially completed genome X” ⊕X ′′.
Add gray edge rt to partially completed genome X .
Update paths in pathgroups that are affected by the new gray edges.
Remove pathgroups that start with r and t.

Algorithm: insertMH
Insert Missing Homologs in Chromosomes

Input. Two genomes: duplication descendant T ′, outgroup R′, where each gene
has two or three homologs, in the patterns TTR, TT, TR.

Output. Augmented genomes T and R containing exactly three homologs for
each gene, in the pattern TTR, maximizing the number of common edges of
form {a1, b1}, {a2, b2} in T and {a, b} in R.
(Or {a1, b2}, {a2, b1} in T and {a, b} in R.)

While there are genes that have only two copies, count edgeDiff for each
such, which simultaneously finds the BestPosition.
Insert the gene with the minimum edgeDiff value into the BestPosition of this

gene.

Algorithm: count edgeDiff

If a gene g just has one copy (g1) in T ′ and one copy (g) in R′, then we must
insert another copy (g2) into T ′.

If a gene g just has two copies (g1, g2) in T ′, then we must insert g into R′.

(The details are omitted here. This is essentially a greedy heuristic to add
adjacencies reflecting, as if possible, adjacencies already existing in R′ and T ′.)

This enabled us to calculate the “breakpoint re-use” statistic r = 2d/b, which is
a measure of how much signal about conserved order (among segments, not within
segments) remains in the comparison of two genomes after a period of evolutionary
rearrangements. When r = 1, we can have high confidence in the rearrangement
distance and history. When r approaches two, the segment order in the two genomes
being compared are essentially random with respect to each other, i.e. calculating
r for random genomes gives a value approaching 2a. In Table 1, we see both from
changes in d and changes in r that

• most of the signal contained in the order among conserved chromosomal segments
has been lost between the ancestor and Vitis, but is retained to a great degree

aIf breakpoints are frequently re-used during evolution, then r will also be close to 2; unfortunately
there is no internal way of testing the breakpoint re-use hypothesis against the null hypothesis of
complete loss of signal about segment order.23
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between the ancestor and Populus, probably reflecting the difference in divergence
time but also possible biases towards T in the GGH algorithm,19

• the addition of the defective PV gene sets degrades the analysis, more than the
addition of PP sets, though this may be due to the four times greater number of
gene sets in the former,

• the elimination of singletons improves all the analyses, but where PV is present,
this comes about largely by discarding most of the sets, which turn out to be
singletons.

The analysis with 6144 gene sets required almost 48 h on a MacBook, but this
was anomalously large, since those with 4000 or 5000 required less than five hours
and those with 2000 about one hour. Much of the running time is due to the check on
the number of real edges in a pathgroup to choose among Priority 2 or among Prior-
ity 3 options. This could be reduced by optimizing data structures in our software.

7. Conclusions

We have formalized a new way of assessing neighborhood selection constraints on
duplicate gene loss, taking into account the particular genomic structure of descen-
dants of WGD. Dividing possible selective effects into those affecting which gene
pairs will lose one member, and those affecting which member of the pair is lost,
we found no effect of the first type, but a clear effect of the second.

With the application of our GGH method to more than 6000 gene sets, we have
shown that any realistic case of genome doubling should be amenable, even if all
the gene paralogs remain in the sequenced descendant.

The reconstruction of long conserved segments in Fig. 5 attests to the coherence
of orthoMCL homolog sorting and GGH.

The inclusion of defective PV gene sets would appear to add little more than
noise to the analysis, but the PP sets would seem to add significant information,
especially to the ancestor–Populus comparison.

The elimination of singletons proves to be a meaningful way of drastically
decreasing the number of segments (as measured by b) and the genomic distance
to credible levels, though this still does not result in a detectible signal in the
ancestor–Vitis comparison.

The recently sequenced Carica papaya genome,24 which is phylogenetically more
closely related to Populus, but like Vitis is diverged before the Populus doubling
event, can also play the outgroup role in our analysis,18 but accuracy is diminished
since genome assembly has not been completed. In general, as sequences become
more polished and further complete homology sets can be more accurately detected,
our methods should become more accurate.
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