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Abstract

The purpose of this chapter is to provide a comprehensive review
of the field of genome rearrangement, i.e., comparative genomics based
on representation of genomes as ordered sequences of signed genes. We
specifically focus on the “hard part” of genome rearrangement, how to
handle duplicated genes. The main questions are: how have present-day
genomes evolved from a common ancestor? What are the most realis-
tic evolutionary scenarios explaining the observed gene orders? What
was the content and structure of ancestral genomes? We aim to pro-
vide a concise but complete overview of the field, starting with the
practical problem of finding an appropriate representation of a genome
as a sequence of ordered genes or blocks, namely the problems of or-
thology, paralogy and synteny block identification. We then consider
three levels of gene organization: the gene family level (evolution by
duplication, loss and speciation), the cluster level (evolution by tandem
duplications) and the genome level (all types of rearrangement events,
including whole genome duplication).

Keywords: Comparative Genomics, Gene Order, Rearrangement, Dupli-
cation, Gene Loss, Gene Family.
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1 Introduction

In comparative genomics, gene orders were originally modeled as unsigned
[120] or signed [99] permutations, in order to analyze data on organellar or
prokaryote genomes. This provided an alternative to the classical method of
comparing the DNA sequence of single genes. These models required each
genome being compared to have exactly the same set of genes, in exactly
one copy each. As more and more genomes have been sequenced, it is now
clear that genes are not present in single copies in each genome, and that
the number of copies is highly variable from gene to gene and from species to
species, preventing the application of simplistic single-gene-copy model to real
datasets, and requiring the represention of a genome as a sequence of genes in
one or multiple copies.

The role of duplication has long been recognized in the evolution of species
[85], especially in eukaryotes, where large or small sets of homologous genes,
grouped into gene families , can be found by applying local similarity search
tools. The prevalence of gene loss can also be inferred from the distribution of
the number of gene copies among species. In addition to duplication and loss,
the architecture of genomes is disrupted through intra- and inter-chromosomal
rearrangement events, which do not change gene content, but may radically
alter gene order.

Inferring the content and structure of ancestral genomes and the evolu-
tionary scenarios that have led to the current composition and structure of
present-day genomes is a major step towards answering to numerous biolog-
ical questions such as the mechanisms of evolution above the DNA sequence
level, variation in rearrangement rates among the different branches of a phy-
logenetic tree, the rates of gene loss and gain, and the consequence of such
variation on the genetic and physiological specificity of species. For all of these
questions, we must be able to address the different gene content of existing
genomes as well as variation in the number of copies of various genes.

A variety of automated approaches have been devised to answer these ques-
tions. After introducing the general concepts of genome rearrangement and the
methodological ways and difficulties of representing genomes as sets of gene
orders (Section 2), this chapter recounts the contribution of computational
biology to the evolutionary study of genomes based on their overall content
and organization, emphasizing the problem of multiple gene copies. We will
consider three levels of gene organization: the gene family level (Section 3),
the cluster level (Section 4) and finally the genome level (Section 5).

At the gene family level, the pertinent events that are taken into account
are speciation, duplication and loss. Understanding the evolution of gene
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families through these events is important in evolutionary biology, phyloge-
nomics [94, 117], and functional genomics. In this context, reconciliation be-
tween the gene tree (obtained from gene sequences) and the phylogenetic tree
representing the evolution of species, is the procedure for inferring a duplica-
tion, speciation and loss history for the gene family. In Section 3, we summarize
the different algorithmic approaches and optimization criteria that have been
used to obtain a reconciled tree.

Duplications of chromosomal segments cover about 5% of the human geno-
me. When multiple segmental duplications occur at a particular genomic locus
they give rise to complex gene clusters. Such genomic regions are exceedingly
difficult to sequence and assemble accurately, and represent a challenge for
computational biology. In Section 4, we review the computational methods
developed for inferring the evolution of gene clusters, for cases both of tandem
and interspersed duplications. In addition to duplication and losses, inversions
and other rearrangement events can affect the shape of a gene cluster.

Of major consequence is the continual disruption of gene order at the whole
genome level. This leads to the rearrangement phylogeny problem, seeking the
ancestral gene orders at the origin of a most “plausible” evolutionary scenario.
The parsimony approach is based on inferring gene orders at the internal nodes
of the tree so that the sum of distances among all branches is minimized. When
studying genome rearrangements, the most natural distance between two gene
orders is the minimum number of rearrangements required to transform one
gene order into the other. In the case of two genomes G and H with no gene
duplicates and the same gene content, a key result in the field of genome re-
arrangement is the 1995 Hannenhalli and Pevzner (HP) formula [61, 112] for
computing the minimum number of inversions and translocations (including
chromosomal fusions and fissions) required to transform G into H, leading to a
polynomial-time algorithm. More recently, another distance that has been ex-
tensively studied is the Double-Cut-and-Join (DCJ) distance which represents
a greater repertoire of rearrangement events while giving rise to simpler for-
mal results [11, 12, 124]. For the purpose of genome rearrangement, handling
duplicated genes leads to hard problems (see [3, 18, 29] for the computation
of genomic distances for example). We review the rearrangement phylogeny
problem in Section 5 emphasizing the case of multiple gene copies. The most
radical evolutionary event resulting in genomes with multiple gene copies is
the Whole Genome Doubling event. We focus on this particular event in the
last sections of this chapter.
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2 Genome rearrangements

In contrast to prokaryotes that tend to have single, often circular chromo-
somes, the genes in plants, animals, yeasts and other eukaryotes are partitioned
among several linear chromosomes.

The genome rearrangement approach to comparative genomics focuses on
the general structure of a chromosome, rather than on the internal nucleic
structure of each building block. An essential prerequisite to any genome re-
arrangement method is thus to represent a chromosome as a linear sequence of
building blocks. Usually genes are the considered building blocks of a genome,
although other genetic or non-coding elements can be considered. In many
cases, a “compressed” representation is provided by clustering two or more
adjacent genes, as well as the intergenic sequences, into synteny blocks (see
Section 2.5). In the most realistic version of the rearrangement problem, a
sign (+ or -) is associated with each gene representing its transcriptional ori-
entation. This orientation indicates on which of the two complementary DNA
strands the gene is located.

In the rest of this chapter, unless otherwise stated, we will consider the
case of signed building blocks, and will consider genes as the building blocks
of a genome. Note that the mathematical developments in the genome rear-
rangement field do not depend on the fact that the objects in a linear order
describing a chromosome are genes.

2.1 Genome representation

Let Σ be a set of n genes. A string is a sequence of genes from Σ, where
each gene is signed (+ or −). The reverse of a string X = x1x2 . . . xr is the
string −X = −xr −xr−1 . . .− x1. A chromosome is a string, and a genome is
a collection of chromosomes. A unichromosomal genome has a single chromo-
some, and a multichromosomal genome has at least two non-null chromosomes
C1, C2, . . . CN . A circular chromosome is a string x1 . . . xr, where x1 is consid-
ered to follow xr. A chromosome that is not circular is linear .

As most unichromosomal genomes are formed by a circular chromosome,
and most multichromosomal genomes are formed by linear chromosomes, only
circular unichromosomal genomes and linear multichromosomal genomes are
generally considered in genome rearrangement studies.

Let G be a genome with gene content Σ. We say that G is a singleton
genome iff each gene in Σ is present exactly once in G.
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2.2 Rearrangement events

During their evolution, genomes are subject to global movements and displace-
ments affecting their overall organization and gene order. The following are
the most studied operations affecting gene orders.

• A reversal (or inversion) is an operation that changes some proper sub-
string of a chromosome into its reverse.

• A transposition is an operation that cuts a proper substring of a chro-
mosome and inserts it somewhere else in the same chromosome.

• A translocation between two chromosomes X = X1X2 and Y = Y1Y2 is
an event transforming them into the two chromosomesX1Y2 and Y1X2, or
into X1(−Y1) and (−Y2)X2. Two special cases of reciprocal translocations
are fusions (if one of the two chromosomes generated by the translocation
is an empty string) and fissions (if one of the two input chromosomes is
the empty string).

• Sometimes inverse transpositions and/or transpositions from one chro-
mosome to another are considered elementary operations on the same
footing as the others listed.

2.3 Rearrangement distances

The rearrangement distance is defined between two genomes G and H with the
same gene content as the minimum number of rearrangement events required
in a scenario transforming G into H (see Figure 1 (middle) for an example
of the inversion distance). A key result in the field of genome rearrangement
is the 1995 Hannenhalli and Pevzner (HP) formula [60, 61, 62] for computing
the inversion, translocation and inversion+translocation distances between two
singleton genomes, leading to exact polynomial-time algorithms. They are all
based on a representation of the genomes G and H as a bicoloured graph called
the breakpoint graph. Subsequently, various improvements and alternative rep-
resentations of permutations have led to other algorithms, the most efficient
once running in linear time [6, 10, 112]. As for the transposition distance, al-
though many efficient bounded heuristics have been developed [7, 63, 79, 116],
the complexity status of the problem remains unknown (though conjectured
NP-hard).

A related distance that has been extensively studied in the last years is
the DCJ distance [11, 12, 124]. Given a genome G, a Double-Cut-and-Join
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(DCJ) is an operation that “cuts” two adjacencies ab and cd in a genome, and
replaces them by either ac and bd, or ad and bc. See Figure 1 (right) for an ex-
ample of the DCJ distance. The DCJ distance is interesting from a theoretical
point of view as it leads to a unifying formula including all previously studied
rearrangement events, as well as transpositions, for which no polynomial-time
exact method is known. Computing the DCJ distance between two signed
permutations is a linear-time problem [11, 124].

A simpler distance measure is the breakpoint distance, which is the number
of disruptions between conserved segments in G and H, that is the number of
pairs of genes a, b that are adjacent in one genome (contains the segment ‘ab’)
but not in the other (contains neither ‘a b’, nor ‘−b − a’). See Figure 1 (left)
for an example of the breakpoint distance. This metric, introduced in [120], is
easily computed in time linear in the length of the genomes. Notice that this
is equivalent to a similarity measure, namely the number of conserved gene
adjacencies between the two genomes. Different generalizations of adjacency
conservation to clusters involving more than two genes have been introduced
in the literature (for example common intervals and gene teams discussed in
Section 2.5). Some of them have been used as alternative to distance measures
between two genomes [8, 22].

 1  −4   3   2   5   6H:  1   2   3   4   5   6

 1  −4 −3   2   5   6

 1 −4  −3 −2   5   6

H:  1    2   3   4   5   6

G:  1   4   3   2   5   6

a

H:  1   2   3   4   5   6

ad, bc

ad, bc

    1   2   5   6   ,      4   3

c d

G:  1   4   3   2   5   6 G: 1 4 2 53 6

b dc

a b

Figure 1: G and H are two linear and single chromosomal genomes on the
alphabet {1, 2, 3, 4, 5, 6}. (Left): The breakpoint distance between G and H
is 4. Each dot represents a breakpoint in G with respect to H; (Middle): The
inversion distance between G and H is 4. Each line following G is the genome
obtained after applying the inversion performed on the substring underlined
in the genome of the previous line; (Right): The DCJ distance between G and
H is 2. Each of the two DCJ operations cuts the two adjacencies ab and cd
and replaces them by ad and bc. The first DCJ creates a circular intermediate
chromosome.
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2.4 Gene families

Representing genomes as linear orders of genes requires a preliminary identi-
fication of the pairwise homology relationship between genes. From a concep-
tual evolutionary point of view, two gene copies are homologs if they originate
through sequence divergence from the same ancestral gene. In operational
practice, we attempt to identify homologs by sequence similarity. For exam-
ple, using a BLAST-like method, all gene copies with a similarity score above
a certain threshold would be grouped into the same gene family or homology
family.

It is important to distinguish between two kinds of homology: orthology,
the relationship between two gene copies in two genomes, where the two genes
have diverged from a single gene in the most recent common ancestor of the
two genomes through genome speciation (followed by independent evolution at
the sequence level), and paralogy, the relationship between two gene copies in
the same genome (due to a duplication event in that genome or in an ancestor
genome) or between two gene copies in two different genomes, where the two
genes have diverged from duplicate gene copies in the most recent common
ancestor of these two genomes. From a functional point of view, orthologs,
which are the direct descendants of a single ancestral gene copy, are more likely
to be functionally related than paralogs, which originate from duplication and
are a major source of gene innovation and creation of new functions [85].

In the example of Figure 2, the surviving gene copy in species 1 is or-
thologous to the surviving copies in genomes 2 and 3, but paralogous to the
surviving copy in genome 4. A major complication in the identification of
orthologs is that orthology is generally not a one-to-one relationship. Indeed,
one gene copy in a phylogenetic lineage may be orthologous to a whole family
of paralogs (inparalogs) in another lineage (in Figure 2, the surviving copy in
genome 1 is orthologous to the two paralogous surviving copies in genome 3).

Assuming an equal rate of sequence-level evolution inside a gene family,
time divergence in term of sequence similarity score can be used, at least as
a first step, to discriminate orthologs from paralogs. All pairs of orthologs
in two genomes should have the same divergence time, determined by the
date of speciation. Paralogs are not constrained in this way. Thus, most of
the existing methods for orthology assignment, such as the well-known COG
system [111], the OrthoMCL [32] or INPARANOID [84] programs, just to
name a few, rely mainly on sequence similarity, usually measured via BLAST
scores. However, the result of a pure sequence similarity method is often
questionable. Indeed, incorrect orthology assignments might be obtained if
the real rates of evolution vary significantly between paralogs. Moreover, this
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approach relies exclusively on local mutations, and neglects the gene order
data that might provide valuable evolutionary information.

For this reason many protocols for grouping genes into families involve a
second step, after filtering by sequence similarity, which takes accounts for the
immediate neighbourhood of each gene copy [76, 82]. Only copies in similar
neighbourhoods are kept as potential orthologs. More general methods for
identifying orthologs between two genomes based on the gene order context
of genes have been developed. They all begin by identifying gene families by
mean of sequence similarity. The homologs are then treated as copies of the
same genes, and ortholog assignment is formulated as a natural combinato-
rial optimization problem of rearranging one genome into another with the
minimum number of events. The exemplar approach [95] selects exactly one
representative of each gene family in each genome, in a way that minimizes
the number of breakpoints or inversions. Other approaches maximize the
number of genes matched in each family [29, 3]. A more general method al-
lowing all gene copies to be kept, and accounting for reversals, translocations,
fusions and fissions, has been developed and implemented in the MSOAR
software [46, 68, 104]. Finding the most parsimonious rearrangement process
transforming one genome into another constructs, as a byproduct, the list of
orthologous gene pairs. (See also [125] for the implications of duplication,
insertion and deletion for DCJ analyses.)

A third approach to orthology annotation in a gene family is to use pairwise
sequence similarity scores to construct a gene tree for the gene family, and
directly infer the duplication, speciation and loss events from this tree, by
“reconciling” it with the phylogenetic tree of all the species represented. This
approach will be detailed in Section 3.

2.5 Synteny blocks

An alternative for representing genomes as linear orders of building blocks
is to identify sets of “conserved segments”, that are not necessarily limited to
single genes.

In a pioneering paper, Nadeau and Taylor [83] introduced the notion of
conserved segments, chromosomal regions in two genomes containing the same
genes in the same order. Such regions can reflect functional pressure requiring
a group of genes to be close to each other on the genome. For example operons
in prokaryotes, transcribed from a single messenger RNA molecule and thus
required to be contiguous on the chromosome, co-expressed genes or genes
part of a given biochemical pathway. Alternatively, conserved segments can
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simply result from the close evolutionary relationship between two genomes:
not enough time has elapsed since their speciation from a common ancestor
for rearrangements to break up some groups of genes.

Based on a map of 83 mouse genes and only chromosomal assignments
data for their human homologs, Nadeau and Taylor [83] estimated there to
be around 180 conserved segments between the human and mouse genome.
This proved to be surprisingly accurate while additional thousands of genes
were added to the genetic maps [100]. As complete genomic sequences became
available, however, it became clear that at higher levels of resolution, human
and mouse genomes are significantly more rearranged [69]. This holds not only
for “micro-rearrangement” of intergenic, non-coding DNA, but often as well
for neighbouring genes within conserved regions. The complexity of genomes
and the prevalence of micro-rearrangement have led to many concepts more
forgiving of small rearrangements than strictly conserved segments.

In 2003, Pevzner and Tesler developed the notion of “synteny blocks”
as being segments that can be converted to conserved segments by micro-
rearrangements [91]. The GRIMM-Synteny algorithm they introduced by-
passes the difficult issues of gene annotation and ortholog identification by
constructing synteny blocks from a dot-plot of anchors, representing bidirec-
tional best local DNA similarities between genomes (in their work, the human
and mouse genomes). These anchors do not necessarily reflect similarities
within genes but may also consist of similarities between non-coding regions.
Synteny blocks are constructed by chaining closely located anchors, ignoring
micro-rearrangements, and creating large conserved blocks on a scale similar
to conserved segments predicted by Nadeau and Taylor. GRIMM-Synteny has
more recently been extended to the study of multiple genomes, and to genomes
exhibiting a high range of sequence duplication [90, 92]. GRIMM-Synteny is
only one example of the many alignment methods that have been developed
for synteny block generation.

From a combinatorial point of view, various formal models of conserved
blocks of genes, also called gene clusters or synteny blocks of genes have been
introduced [8, 40, 65]. In particular, the notion of common intervals is a first
generalization of conserved segments in which we relax the conditions that
genes appear in the same order or the same orientation. Formally, given K
genomes represented as permutations on an alphabet Σ, a common interval
is a subset S of Σ such that, in each genome, all the genes in S are con-
tiguous. The notion of common intervals was first introduced by Uno and
Yagiura in the case of two permutations [113], and efficient algorithms to find
common intervals have been developed for K permutations [13, 64]. To avoid
considering the repetitive and overlapping structure of common intervals, the
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notion of a strong common interval , defined as a common interval that does
not overlap any other common interval, has been introduced [72]. Strong in-
tervals are likely to capture interesting biological properties as they represent
a measure of maximality of gene conservation, and they allow us distinguish
between local and global rearrangement events. They also have rich combina-
torial properties [8]. In particular, representing them in a PQ-Tree structure
allows to generate all common intervals in linear time.

The most relaxed definitions of gene clusters in permutations account for
possible gaps between the conserved genes. A first formal model for max-gap
clusters in permutations was introduced in [9] under the name of gene team,
and algorithmic and statistical properties discussed in [66]. Given K genomes
represented as permutations on an alphabet Σ, and given an integer δ ≥ 0, a
gene team is a maximum subset S of Σ such that, in each genome, any gene
in S is separated by at most δ genes from another gene of S. Notice that a
common interval is just a gene team with δ = 1. The best complexity achieved
to compute all the gene teams of K genomes is O(Kn log2(n)), where n = |Σ|.

Common intervals and, more generally, max-gap clusters completely aban-
don constraints on conservation of gene order. At the other extreme, conserved
segments require complete identity of gene order. A way of introducing a de-
gree of order conservation within gapped clusters is to require that two genes
separated by at most δ genes in one genome must be separated by at most
δ genes in the other [126, 135]. When δ = 0, these “generalized adjacency
clusters” become conserved segments, but for larger δ, common gene order
becomes difficult to discern. When δ2 approaches the number of genes in a
(unichromosomal) genome, percolation occurs so that the cluster becomes the
entire genome [123].

3 Reconciliation: Gene family Evolution by

Duplication, Speciation and Loss

Almost all genomes which have been studied contain genes that are present
in two or more copies. They may be adjacent on a single chromosome, or
dispersed throughout the genome. As an example, duplicated genes account
for about 15% of the protein genes in the human genome [74]. More generally,
in eukaryotic genome sequences, duplicated genes account for 10% to 16% of
the yeast genome, and about 20% of the worm genome [121].

Gene duplication is a fundamental process in the evolution of species [85],
especially in eukaryotes [19, 35, 41, 57, 75, 117], where it is believed to play
a leading role for the creation of novel gene functions. Several mechanisms
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are at the origin of gene duplications: tandem repeat through slippage during
recombination (see chapter 8 in [49]), gene conversion, horizontal transfer, hy-
bridization and whole genome duplication [42, 96]. Gene loss, arising through
the pseudogenization of previously functional genes or the outright deletion of
chromosomal fragments, also plays a key role in the evolution of gene fami-
lies [19, 35, 36, 41, 57, 75, 85].

As previously noted in Section 2.4, sequence similarity can be used to
produce an initial clustering of genes into gene families. It can also be input
into classical phylogenetic methods to construct a gene tree, representing the
evolution of the gene family by local mutations. However, inferences about
the evolution of the gene family by duplication, speciation and loss cannot
be obtained directly from this gene tree alone. “Reconciliation” between the
gene tree and a species tree is the most commonly used approach to infer a
duplication, speciation and loss history for the gene family.

Let G = {1, 2, · · · , g} be a set of g species. A phylogenetic tree or species
tree S for G is a tree reflecting the evolutionary relationship among the species.
More precisely, a species tree on G is a tree with exactly g leaves, where each
i ∈ G is the label of a single leaf (Figure 3.(a)). A gene tree T on G is a tree
where each leaf is labeled by an integer from G (each leaf labeled i represents
a gene copy located on genome i) (Figure 3.(b)). In the presence of a strong
phylogenetic signal, inferred trees are usually binary, as a speciation event
usually results in the creation of two new species. Uncertainty in the phylo-
genetic signal can be accommodated by replacing some phylogenetic subtrees
that cannot be fully resolved, by a single node, resulting in a non-binary tree.
Depending on the phylogenetic reconstruction method, gene and species trees
may be rooted or unrooted.

In the following sections, the input consists of a species tree S for G and a
gene tree T for some gene family on G, where S and T are both rooted and
binary. Extensions to non-binary gene or species trees have been developed [33,
114], as well as extensions to unrooted trees [33]. Moreover, all the following
developments can be directly generalized to the reconciliation of a forest of
gene trees.

3.1 Incongruence between a gene tree and a species tree

Applying a classical phylogenetic method to the sequences of a family of genes
generally leads to a gene tree T that is different from the species tree, mainly
due to the presence of multiple gene copies in T , and that may reflect a diver-
gence history different from S (Figure 3.(a) and (b)). Assuming no sequencing
errors and a “correct” gene tree (which may be difficult to confirm), this in-
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congruence between the two trees is a footprint of the evolution of the gene
family through processes other than speciation, such as duplication, loss, gene
convergence or horizontal gene transfers. It can therefore be exploited to re-
cover the history of the gene family, and eventually decipher the orthologous
and paralogous relationships among gene copies. In this section, we focus
on the duplication-loss model of evolution, assuming an evolution of the gene
family by duplications and losses only (Figure 2). The concept of reconciling
a gene tree to a species tree under the duplication-loss model was pioneered
by Goodman [52] and then widely accepted, utilized and also generalized to
models of other processes, for example horizontal gene transfer [58].

1 2 3 4

Figure 2: Evolution of a gene family by duplication, speciation and loss, em-
bedded into the phylogenetic tree ((1, 2), (3, 4)) representing the evolutionary
relationship among the four species {1, 2, 3, 4}. The double-large filled dots
represent duplication events, single-small filled dots represent surviving gene
copies and empty dots represent lost genes (not present in the extant species).

3.2 Definition of Reconciliation

Conceptually, a reconciliation between a gene tree T and a species tree S is a
tree accounting for the evolutionary history of the species and all genes of the
gene family, including lost and missing gene copies, by duplication, speciation
and loss.

There are several formal definitions of reconciliation between a gene tree
and a species tree (see section bellow). Here we define reconciliation in terms
of subtree insertions, following the notation used in [27, 28, 54]. We first
introduce some preliminaries:

• A subtree insertion in a tree T is performed by grafting a new subtree
onto an existing branch of T .
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• A tree T ′ is said to be an extension of T if it can be obtained from T by
a sequence of subtree insertions.

• For a given vertex (or node) x of a tree T , we denote by Tx the subtree
of T rooted at x and by L(x) the subset of G defined by the labels of the
leaves of Tx. L(x) is called the genome set of x. If x is not a leaf, we
denote by xl and xr the two children of x.

• T is said to be DS-consistent with S (DS for “Duplication/Speciation”)
if, for every vertex x of T such that |L(x)| ≥ 2, there exists a vertex u
of S such that L(x) = L(u) and one of the following conditions (D) or
(S) holds: (D): L(xr) = L(x`); (S): L(xr) = L(ur) and L(x`) = L(u`).

Definition 1 A reconciliation between a gene tree T and a species tree S is
an extension R(T, S) of T that is DS-consistent with S.

For example, the tree of Figure 3.(c) is a reconciliation between the gene
tree T of Figure 3.(b) and the species tree of Figure 3.(a). Such a recon-
ciliation between T and S implies an unambiguous evolution scenario for the
gene family, where a vertex that satisfies property (D) represents a duplication
(duplication vertex), a vertex that satisfies property (S) represents a specia-
tion (speciation vertex), and an inserted subtree represents a gene loss (see
Figure 3.(d)).

3.3 Optimization criteria

The definition above allows for many reconciliations for given S and T . In-
deed, an evolutionary model unconstrained with respect to the number of
losses allows for an unbounded number of possible reconciliations. For this
reason, appropriate optimization criteria, either combinatorial or probabilis-
tic [5], should be considered. The combinatorial criteria most often considered
in the literature are the number of duplications (duplication cost), the number
of losses (loss cost), or both (mutation cost) [33, 77].

The first formal definition of a “reconciled tree” introduced by Page [86] can
be reformulated as the reconciliation (following our definition of Section 3.2) of
minimum size (minimum number of leaves) or, equivalently, the reconciliation
minimizing the number of duplications. An equivalent constructive definition,
based on a mapping, called the LCA mapping between the gene tree T and the
species tree S, was formulated in [55, 88] and widely used [20, 39, 44, 54, 77,
86, 87, 88, 128]. The LCA mapping between T and S, denoted by M , maps
every vertex x of T to the Lowest Common Ancestor (LCA) of L(x) in S. This
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A
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(a)  S:

1 2 3 4 11 31
4121

1312

A

A

C

B

B

(b)  T: 

2111 12 31
13 4123

32 4222

2111 12 13

31 41

A

A

A

B B B C
C

B

(c)  M(T,S):  

Genome 2Genome 1

Genome 4Genome 3

Speciation 1,3

Duplication

Duplication

Speciation 3,4

Gene loss

Gene loss

(d)  History:

Speciation 1,2

Figure 3: (a) A species tree S for G = {1, 2, 3, 4}. The three internal vertices
of S are named A, B and C; (b) A gene tree T . A leaf label xy indicates the
y gene copy in genome x. Internal vertices’ labels are attributed according to
the LCA mapping between T and S. Circles represent the duplication vertices
of T with respect to S; (c) A reconciliation M(T, S) of T and S. Dotted lines
represent subtree insertions (3 insertions) added to construct a reconciliation,
i.e. an extension of T that is DS-consistent with S. Crossed leaves represent
absent gene copies that are artificially added to form the reconciliation tree.
The correspondence between vertices of M(T, S) and S is indicated by vertices’
labels. Circles represent duplications. All other internal vertices of M(T, S)
are speciation vertices; (d) Evolution scenario resulting from M(T, S). Each
oval is a gene copy.
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mapping induces a reconciliation between T and S, denoted M(T, S), where
an internal vertex x of T is mapped to a duplication vertex iff M(x`) = M(x)
and/or M(xr) = M(x). See Figure 3.(a), (b) and (c) for an example.

Interestingly, M(T, S) not only minimizes the duplication cost, but also
minimizes the loss and mutation costs [28]. Moreover, M(T, S) is the only
reconciliation between T and S that minimizes the loss cost. It follows from
this result that minimizing losses results in minimizing duplications. The
converse is not true, as more than one reconciliation minimizing duplications
may exist, in general (see Exercise 1 for an example). Stated differently, the
loss cost criterion is more constraining than the duplication cost criterion for
reconciliation.

Although parsimony is a convenient and widely used criterion in evolu-
tionary inference, it is often worthwhile to investigate the wider class of near-
optimal solutions. In the present context, we are thus motivated to define
larger classes of reconciliations, including M(T, S), but also sub-optimal so-
lutions (with respect to the number of duplications) [38, 54, 55, 89]. This
allows to explore a larger space of reconciliations and alternative evolutionary
scenarios for gene families.

3.4 Algorithms

A number of algorithms have been implemented for computing M(T, S) based
on the LCA mapping. The two most efficient ones are those in [44, 128], the
latter implemented in the program GeneTree [87], and both with worst-case
running times of O(n) for a gene tree with n leaves. An alternative, simpler
algorithm running in O(n2) worst-case complexity, has also been developed
in [136], for computing the LCA mapping between two trees.

From the alternative perspective of losses, [28] describes a simple algo-
rithm for constructing the unique reconciliation tree minimizing the loss cost
(which, as explained in Section 3.3, is the same tree inferred by the LCA map-
ping). It is based on minimizing the number of inserted subtrees required to
obtain a reconciliation. As stated in Theorem 2 in [28], this algorithm can be
implemented to run in O(n) time and space.

Another important problem arises when the species tree S is unknown,
but a number of gene trees T1, T2, · · · , Tr are given. The problem is to infer,
from the set of gene trees, a species tree S leading to a parsimonious evolution
scenario, for a chosen cost. As in the case of a known species tree, methods
have been developed for the duplication and mutation cost versions of this
problem [33, 59, 77]. For both criteria, inference of an optimal species tree
given a forest of gene trees is an NP-hard problem [77].
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3.5 Noise in Gene Trees

The main complaint about reconciliation methods is that the inferred dupli-
cation and loss history for a gene family is strongly dependent on the gene
tree considered for this family. Indeed, a few misplaced leaves in the gene tree
can lead to a completely different history, possibly with significantly more du-
plications and losses [56]. Reconciliation can therefore inspire confidence only
in the case of a well-supported gene tree. Typically bootstrapping values are
used as a measure of confidence in each edge of a phylogeny. How should the
weak edges of a gene tree be handled? One reasonable answer is to transform
the binary gene tree into an unresolved gene tree by removing each weak edge
and collapsing its two incident vertices into one. Chang and Eulenstein [25]
present an extension of the duplication loss model to gene trees with apparent
polytomies (non-binary gene trees) and develop a polynomial time algorithm
for solving this version of the reconciliation problem.

Another strategy adopted in [33] is to explore the space of gene trees
obtained from the original gene tree T by performing Nearest Neighbor In-
terchanges (NNI’s) around weakly-supported edges. The problem is then to
select, from this space, the tree giving rise to the minimum reconciliation cost.

Still another possibility is to ignore gene copies leading to weak edge sup-
port. Criteria for identifying, in the gene tree, potentially misplaced or mis-
leading leaves were given in [28], where “non-apparent” duplication vertices
are flagged as potentially resulting from misplacement of one leaf in the gene
tree. These concepts open the door to future developments in the correction
of gene trees prior to reconciliation [37].

4 Gene Cluster Evolution

Analysis of the human genome sequence revealed the presence of many re-
gions that have been subject to repeated local duplications, giving rise to
complex gene clusters. The major mechanism causing these local duplications
is unequal crossing-over during meiosis. As this phenomenon is favored by
the presence of repetitive sequences, a single duplication can induce a chain
reaction leading to further duplications, eventually creating large repetitive
regions. When those regions contain genes, the result is a Tandemly Arrayed
Gene (TAG) cluster : a group of paralogous genes that are adjacent on a chro-
mosome. TAGs represent about 15% of all human genes [105] and are involved
in a variety of functions such as binding and receptor activities. In particular,
the olfactory receptor genes constitute the largest multigene family in verte-
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brate genomes, with several hundred genes per species [51]. Other examples
of TAG families include the APOBEC3 genes [73], the immunoglobulin and
T-cell receptor genes [4] and the zinc finger genes [103].

As gene duplication is often followed by functional diversification, gene
clusters provide a particularly interesting mechanism for rapid evolution. It is
noted in [108] that a substantial fraction of what distinguishes humans from
other primates, as well as the genetic differences among humans, cannot be
understood until we have a clear picture of the content of gene clusters and the
evolutionary mechanisms that created them. However, those repeated regions
are extremely difficult to study, or even to assemble correctly. Moreover, just
defining what is meant by a proper alignment of a gene cluster is a matter
of discussion. Indeed, during evolution, the duplication status of segments is
obscured by subsequent deletions, breaks and rearrangements. Typically, the
dot-plot of a cluster self-alignment produced by a standard software such as
BLASTZ [102], exhibits clouds of short interleaving alignments that cannot
be directly translated into an unambiguous sequence of duplicated segments.

One solution is to restrict the study to recent duplications (those appear-
ing clearly in the dot-plot), for example those retaining over 95% identity.
In this vein, Zhang et al. [129, 130] proposed a method for preprocessing a
self-alignment or a pairwise-alignment dot-plot, whose output represents the
clusters as ordered sequences of signed atomic segments. The procedure con-
sists of filtering out weak alignments with percentage identity less than a given
threshold, processing the dot-plot such that all local alignments satisfy the
“transitive closure property”, and finally chaining together local alignments of
similar percentage identity broken by small insertions/deletions.

Using this kind of preprocessing of dot-plots, various methods have been
developed for reconstructing a hypothetical ancestral sequence and a most par-
simonious set of duplications (in tandem or not) and other evolutionary events
leading to the observed gene clusters [108, 115, 129, 130]. In particular, Zhang
et al. [130] developed a simple combinatorial algorithm under the assumptions
of no deletions and no boundary reuse, as well as a stochastic algorithm allow-
ing for deletions and boundary reuse. The model was then extended in [129]
for the study of orthologous TAG clusters in different species. A Bayesian ver-
sion has been implemented by Vinar et al. [115]. A combinatorial method has
also been developed in [108] for a general model involving deletions, inversions
and duplications, allowing any possible placement of the duplicated segment
inside the cluster (including inside the duplicated segment).

While these methods are useful to infer recent evolutionary events, they
are less appropriate for longer time scales, as alignment of non-functional re-
gions becomes impossible due to mutations (such as indels and substitutions)
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continuously affecting each duplicated segment. An alternative and comple-
mentary approach is to focus on the genes present in the cluster. Indeed,
as coding regions are usually characterized by lower evolutionary rates than
surrounding non-coding regions, they provide a phylogenetic signal that can
be used in combination with gene order data to infer evolutionary histories in
which duplication events are explicitly determined. In the following section,
we review the algorithmic methods that have been developed for studying the
evolution of TAG clusters.

4.1 The Tandem-Duplication Model of Evolution for
TAGs
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Figure 4: (A): a tandem duplication history leading to a cluster with six genes
(from a to f). Each rectangle denotes a simple tandem duplication. The
resulting gene order on the two DNA strands are shown below the tree; (B):
the duplication tree resulting from (A); (C) and (D): The gene orders obtained
after the first and second reversals indicated, respectively; (E): The gene tree
resulting from the duplication and reversal history of the gene family. (E) is
not a duplication tree.

The first model of evolution to consider TAGs added tandem duplications
resulting from unequal recombination to the point mutations classically as-
sumed to be the sole evolutionary mechanism acting on sequences [45]. For-
mally, from a single ancestral gene at a given position in the chromosome, the
tandem-duplication model of evolution assumes that the locus grows through
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a series of consecutive duplications placing the newly created copy next to the
original one. Such tandem duplications may be simple (duplication of a single
gene) or multiple (simultaneous duplication of neighboring genes).

Several studies have considered the problem of inferring an evolutionary
history for a TAG cluster [15, 43, 109, 127]. These are essentially phyloge-
netic inference methods using the additional constraint that the resulting tree
should induce a duplication history according to the given gene order. Such
trees are called duplication trees (see Figure 4, (A) and (B)). However, it is
often impossible to reconstruct a duplication history for a TAG cluster [49],
even from well-supported gene trees. This is due to the occurrence of other
mechanisms, such as deletions and genomic rearrangements [41], during the
evolution of the gene family (Figure 4, (C), (D) and (E)).

An attempt for incorporating gene losses into the tandem-duplication model
of evolution has been made by Chaudhuri et al. [26]. This tandem duplication-
loss model of evolution assumes that a genome evolves through a sequence
of tandem duplication-loss events, where a tandem duplication-loss event is a
tandem duplication immediately followed by the loss of one copy of each du-
plicated gene. It is rather unrealistic, requiring that gene content and number
remain unchanged during evolution (evolution from a permutation to another
permutation).

A generalization of the tandem-duplication model allowing for inversions
has been developed by Lajoie et al.. In [71], they present an exact branch-and-
bound algorithm for the inversion distance, and a polynomial-time heuristic for
the simpler breakpoint distance. The former algorithm permits the calculation
of the minimum number of inversions involved in the evolutionary history of a
TAG cluster in a single species, by simple tandem duplications and inversions.
The model was extended in [16] to the study of orthologous TAG clusters in
different species. Given the gene and species trees for a set of orthologous TAG
clusters and their respective gene orders, this paper considers the problem of
inferring the ancestral gene orders leading to a most parsimonious sequence
of evolutionary events. The algorithm proceeds in two steps. First, ignoring
gene orders, a classical gene tree/species tree reconciliation method is used
to infer a “minimal” duplication, speciation and loss history in agreement
with a known species tree. Second, ancestral gene orders are inferred that are
consistent with minimizing the number of inversions required to obtain a valid
duplication tree.

Both methods in [71] and [16] were developed under the assumption of sim-
ple tandem duplications only. However, while allowing for exact algorithmic
solutions, this assumption is an important limitation to its applicability. A
heuristic algorithm in [70] produces a set of optimal evolutionary histories for

19



a TAG cluster in a single species, allowing for tandem duplications, inverted
tandem duplications, inversions and deletions, each event involving one or a set
of adjacent genes. Experiments on simulated data showed that the most recent
evolutionary events can be inferred accurately when the exact gene trees are
used. Despite the uncertainty associated with the deeper parts of the recon-
structed histories, they can be used to infer the duplication size distribution
with some precision. The extension of this algorithm to consider the evolution
of a cluster in multiple species is a challenging direction for future research.

5 Genome Evolution

The evolution of genomes is most often represented by a phylogenetic tree,
though in some contexts, such as massive horizontal transfer of genes among
prokaryotes or evolution within species, a reticulate or network representation
may be required. We separate the problem of reconstructing or inferring a
tree from data on present-day genomes into two parts. The “large” phyloge-
netic problem is one of finding the topology, or branching pattern, of the tree
connecting the given genomes represented by the terminal nodes, or leaves, of
the tree. The “small” problem is the inference, for a given phylogeny, of the
ancestral genomes identified with each of the non-terminal nodes of the tree.
This section is dedicated to the small phylogenetic problem.

5.1 The distance-based approach

We can approach the small problem by minimizing total branch length over a
phylogeny while reconstructing optimal ancestral gene orders. Formally, let S
be a phylogeny (i.e. a species tree) where each of the Nt terminal nodes (leaves)
is labelled by a known gene order on the same n genes, and let d be a metric
on the set of gene orders. Each branch of S may be incident to at most one
terminal node and at least one of the Na ancestral nodes. Each non-terminal
node is of degree at least three. We want to reconstruct R = (G1 . . . , GNa), a
set of gene orders at the ancestral nodes that minimize

L(R) =
∑

branch XY ∈S

d(XY ). (1)

The archetypical (unrooted) phylogeny has three or more leaves and exactly
one non-terminal node, as on the top of the Fig. 5. The problem becomes
that of reconstructing a single gene order M , the sum of whose distances to the
given gene orders is minimal. An early algorithm for this “median” problem

20



Rearrangement Phylogeny

A

B C

M

Figure 5: (top) Median problem: given genomes A,B,C, find M such that
d(A,M) + d(B,M) + d(C,M) is minimized. (left) Example of unrooted phy-
logeny with given present-day genomes at terminal nodes (dark dots) and
genomes to be inferred at the ancestral nodes (white dots). (right) Inference
of genomes at ancestral nodes found by iterating through the ancestral vertices,
solving a median problem at each step.
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[97] is based on the breakpoint median. Technical speedups were described by
Cosner et al. [34] and incorporated into the GRAPPA software [67]. Siepel
[106] and Caprara [24] gave exact median algorithms for small instances of
reversal distance and Bourque [21] and Moret et al. [81] released heuristic web
applications for this version of the problem.

For most formulations, in terms of different kinds of genome and different
distances, the median problem is known (or thought) to be NP-hard; recently,
however, for the case of breakpoint distance on multichromosomal genomes
not restricted to be linear, Tannier et al [110] have given a polynomial-time
algorithm, and this has been implemented [1] as a rapidly executing program.

Much progress has been made recently on exact algorithms for the DCJ
distance capable of handling large or moderate size genomes [122]. As might
be expected for an NP-hard problem, all exact methods encounter bad cases
that require prohibitive computing time to solve. For the median problem this
occurs frequently once the length of the branches approach 15 or 20 % of the
number of genes. There are heuristic methods [131, 132] that are not very
sensitive to the branch lengths, but when the distance becomes 25 or 30 % of
the number of genes, these methods give results that may be significantly far
from optimal.

For the more general small phylogeny problem with more than one ances-
tral node, an effective heuristic strategy is based on the ability of the median
algorithm to achieve a fairly accurate solution in a reasonable time on a large
proportion of instances. As illustrated at the bottom of Fig. 5, the phylogeny
at the left is decomposed on the right into a set of overlapping median con-
figurations, with one non-terminal, i.e., ancestral, node as median, and all its
(three or more) co-linear nodes, terminal or non-terminal. The heuristic con-
sists of solving each of the median problems in turn, updating the median at
each step only if it diminishes the sum of the lengths of the branches incident
to the median, and iterating. This eventually converges to a local minimum.
The quality of the solutions may depend on the initialization of the ances-
tral gene orders [98], e.g., by random gene orders, or by copying some of the
present-day gene orders to the ancestral nodes. It may also depend on various
techniques for escaping from local minima [132].

5.2 The synteny-based approach

The also called “local” [30] or “model-free” [31] approach has three steps:

1. Inference of ancestral gene content. Assuming a model with no conver-
gent evolution and minimum losses, the most natural is to assign a given
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gene x to each internal node on the paths from the node representing
the Lowest Common Ancestor (LCA) of all leaves containing x, to the
leaves containing x (Figure 6.(1));

2. Inference of a set of potential ancestral syntenies (PASs) at a given in-
ternal node of interest based on the observed gene order conservation in
extant species. Usually this inferred set involves a number of conflicts,
i.e. pairs of syntenies that cannot co-occur in a single ancestral chro-
mosome. For example, the two gene adjacencies xy and xz constitute
a conflict. To cope with this difficulty, a weight is usually attributed
to each potential ancestral synteny, reflecting its reliability and support
with respect to the phylogeny;

3. Chaining ancestral syntenies in an “optimal” and non-ambiguous way,
to form a set of Contiguous Ancestral Regions (CARs) [78].

The main difference from the distance approach is that in the absence of
a complete set of ancestral syntenies, the output is a set of ancestral regions
instead of a completely assembled ancestral genome. In other words, it is less
ambitious than the distance approach as it does not propose a rearrangement
scenario, neither does it ensure that the inferred CARs represent complete
chromosomes, but the predicted ancestral syntenies are likely to be more re-
liable as they are more directly deduced from observed conservations in the
extant species.

Steps 2. and 3. of the synteny-based approach can be implemented in
several ways, and the algorithms using such approach mainly differ in: (i)
the definition of synteny (adjacencies, common intervals, max-gap intervals);
(ii) the method used to infer ancestral syntenies; (iii) the weight (statistical
support) attributed to each potential ancestral synteny; (iv) the method used
for resolving conflicts and the one used for chaining syntenies.

The first formal method based on this approach was developed by Ma et
al. [78]. In this algorithm: (i) Syntenies are adjacencies; (ii) Sets of PASs at
a given internal node are computed by the Fitch parsimony algorithm (see
Figure 6.(2.1) for more details); (iii) Weights are given in an ad-hoc manner,
depending on the depth of a breakpoint in the phylogeny; (iv) The set of PASs
at a node is represented as a directed graph. A greedy heuristic approach is
then used to output a set of paths that covers all the nodes of the graph and,
at the same time, maximizes the total edge weights in the paths.

An alternative approach is considered in Bertrand et al. [14], involving
a more general algorithm to be discussed further in Section 6.3. In this al-
gorithm: (i) Syntenies are adjacencies; (ii) In contrast with the previous ap-
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Figure 6: (1) A species tree for the species {A,B,C,D} described by their
gene content. Lower cases are gene names. Ancestral gene content is inferred
as described in the text (step (1) of the synteny-based approach); (2.1) Com-
puting the set of potential ancestral adjacencies by the algorithm of Ma et al..
Right adjacencies of a in extent species are indicated on leaves. For example,
a→ b means that ab is an adjacency in the corresponding genome. The algo-
rithm proceeds as follows: In a bottom-up traversal (indicated by bottom-up
arrows), we compute the set of potential adjacencies of a for each internal node
x as follows: take the intersection of the sets computed for the two children
of x if this intersection is non-empty, and the union otherwise. Then in a top-
down traversal, prune the obtained set at each internal node x by taking the
intersection of this set with that of x’s father if this intersection is non-empty.
Only the top-down arrow leading to a pruning is shown (internal node 2); (2.2)
Computing the weight of an adjacency by the algorithm of Bertrand et al. All
adjacencies are possible at each internal node. Here, the score of adjacency
ab at node x is 4 as it is the maximum number of conserved right adjacencies
for a in the whole tree. A possible set of ancestral adjacencies leading to this
weight is shown (internal node labels).
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proach, all adjacencies of a gene observed in the extant species are considered
as potential adjacencies at each internal node of the tree; (iii) As the main
contribution of the method, a rigorous weight is attributed to each adjacency
of each gene, representing the maximum number of conserved adjacencies of
that gene in the tree (see Figure 6.(2.2) for more details). An exact dynamic
programming algorithm is used for this step.

Using a more relaxed definition of synteny, Chauve and Tannier [31] devel-
oped an alternative “model-free” methodology with the following properties:
(i) Syntenies are defined as a combination of maximum common intervals, un-
signed adjacencies and approximate common intervals; (ii) a group of genomic
markers is potentially contiguous in an ancestral genome (form a PAS) if it is
contiguous in at least two extant species whose evolutionary path on the phy-
logenetic tree goes through the ancestral node being considered; (iii) a weight
is attributed to each PAS following the weighting scheme used in [78]; (iv)
at a given ancestral node, all PASs are encoded by a 0/1 matrix M, where
each row i represents a given synteny Si, each column a given marker j, and
M(i, j) = 1 if marker j belongs to Si, and 0 otherwise. Then, an approach
known in graph theory as the Consecutive Ones problem (C1P) [47] is used:
if the matrix can be reordered to satisfy C1P, then the set of syntenies has no
conflicts, and the C1P ordering of M can be translated directly into a set of
ancestral CARs. Otherwise, the problem reduces to the one of removing the
minimum number of rows from M leading to a C1P matrix.

6 Genome duplication

Whole genome duplication (WGD) is perhaps the most spectacular mecha-
nism giving rise to multigene families. Normally a lethal accident of meiosis, if
genome doubling can be resolved in the organism and eventually fixed as a nor-
malized diploid state in a population, it constitutes a duplication of the entire
genetic material. Right after the WGD event, the resulting genome is a perfect
set of duplicated chromosomes. However, subsequent evolutionary events such
as rearrangements, losses and local duplications blur this initial perfect dupli-
cate status. Usually, a hypothesis that a given species has been subject to a
whole genome duplication event during its evolution is based on the discovery
of numerous pairs of syntenic regions on two different chromosomes (or regions
of a single chromosome) within the same genome, covering a high proportion
of the genome. Such evidence for WGD events has shown up across the whole
eukaryote spectrum, from the protist Giardia to brewer’s yeast, most flower-
ing plant lineages, several insects, fish, amphibians, and mammalian species.
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In plant lineages, those angiosperm genomes that have been completely se-
quenced to date all show evidence of WGD events: three ancient polyploidy
events have been revealed in the Arabidopsis thaliana genome [17, 23], one
in the rice genome that might characterize all monocots (in the grass family,
maize reveals an additional WGD) [93], and others by the poplar, grape and
papaya genomes [107].

In most of the cases, analyzing the duplication status of syntenies in ex-
tant species allows us to position the WGD events on the species tree. Each
WGD node has a single descendant node, in contrast to the binary (at least)
branching at speciation nodes (Figure 7). The content of ancestral genomes
is easily inferred from that of extant species (simple extension of the method
illustrated in Figure 6, taking into account gene multiplicity). However, in-
ferring ancestral gene orders is far from being a simple task, and generalizing
either the distance-based or the synteny-based approach to a phylogeny with
WGD nodes rases many difficulties.
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Figure 7: A phylogenetic tree exhibiting the evolution of six modern species
A,B,C,D,E and F by speciation and a WGD event (the single-child node
indicated by a double dot). Each number indicate gene multiplicity in the
genome labeling the considered leaf or internal node.

Consider the phylogenetic tree of Figure 7, where the double-dot is a WGD
node. In order to generalize the median algorithm (Section 5.1) to be appli-
cable to such a tree, one have to be able to solve the median problem in each
of the following cases:

1. three non-duplicated genomes (D, E and F );

2. two non-duplicated genomes and one duplicated genome (for example C,
D and F );

26



3. one non-duplicated genome and two duplicated genomes (for example A,
B and D);

4. three duplicated genomes (for example A, B and D).

While the first case is just the standard median problem, the three next
cases require specific developments [134]. In Section 6.1, we first introduce the
“Genome Halving Problem”, that, ignoring any phylogenetic context, asks for
the ancestral pre-duplicated genome of a single genome. We then introduce in
Section 6.2 the “Guided genome halving” problem, which is a generalization
of genome halving considering a non-duplicated outgroup. Solutions of these
two problems have been used in [134] to compute the median of three genomes
in case 2. (Exercise 3) and case 3.

As for the synteny-based approach, it is less problematic to generalize it
to an evolution by WGD, insofar as the desired ancestral genome is the one
preceding the oldest WGD event in the tree. This is developed in Section 6.3.
However, inferring an ancestral genome at a node u that is a descendant of
a WGD node causes difficulty in chaining PASs into CARs, as markers are
present in multiple copies at u. For example, suppose we have inferred the
two right adjacencies ab and ac for the gene a at u, and also one left adjacency
da. Then, should this left adjacency be chained to ab, to form the PAS dab, or
to ac to form the PAS dac? Clearly, other criteria than individual adjacencies
should be used to handle this open problem.

6.1 Genome halving

The Genome Halving Problem asks, given a genome T with two copies of
each gene, distributed in any manner among the chromosomes, to find the
ancestral “perfectly duplicated” genome, written A ⊕ A, consisting of two
identical halves, i.e., two identical sets of chromosomes with one copy of each
gene in each half, such that the rearrangement distance d(T,A⊕A) between T
and A⊕A is minimal. Note that part of this problem is to find a labelling as
“1” or “2” of the two genes in a pair of copies of T , so that all n copies labelled
“1” are in one half of A ⊕ A and all those labelled “2” are in the other half.
The genome A represents the ancestral genome at the moment immediately
preceding the WGD event giving rise to A⊕ A.

For reversal and translocation distance, a linear-time solution was discov-
ered in 1999 [42]. For reversal distance, these results have been reformulated
[2] using an alternative representation of the breakpoint graph. There are also
versions for DCJ [80, 118] and for breakpoint distance [110].

27



Generalizations of the algorithms to doubled genomes with missing gene
copies have also been developed [48, 101].

6.2 Guided halving and gene order reconstruction in
phylogenies with WGD

A problem with genome halving is that there are usually many, very different,
perfectly duplicated genomes A⊕A leading to a minimum distance with T . For
biological purposes it would be preferable to be able to use some additional,
or external, information to choose amongst these solutions. Thus the Guided
Genome Halving problem [50, 101, 133] asks, given a genome T , as well as
another genome R containing only one copy of each of the n genes (a non-
duplicated outgroup), find A so that d(T,A ⊕ A) + d(A,R) is minimal. The
solution A need not be a solution to the original halving problem. The reversals
and translocations version and the DCJ version of this problem are NP-hard
[110].

Guided halving using the heuristic pathgroups approach [131] extends nat-
urally to gene order reconstruction in phylogenies containing WGD events
[132].

6.3 The synteny-based approach

In [53], Gordon et al. used a “manual” synteny-based approach to reconstruct
the gene order and content of the yeast ancestor that existed immediately
prior to the WGD event in the evolutionary history of many present-day yeast
species, among those S.cerevisiae. Based on the gene set of each of the eleven
available yeast species (five of them being non-duplicated species), ancestral
syntenies were inferred as follows: using a sliding-window method (window of
size 25), identify Double Conserved Syntenies (or DCS) in each post-duplicated
genome. These are pairs of “syntenic” (or homologous) regions in a post-
duplicated genome that are homologous to a single region in a pre-duplicated
genome. One copy of each pair of DCS is then inferred to be a synteny in the
pre-duplicated ancestor. The final ancestral genome obtained after chaining
the ancestral syntenies has a predicted number of 8 chromosomes.

Inferring ancestral syntenies based on a formal definition of Gordon’s DCSs,
and using the automatic synteny-based approach developed in [31], Tannier
showed that results obtained on the yeast species are very similar to those ob-
tained with the manual approach, while avoiding repetitive and tedious work.
He notes that achieving better convergence with manual processes would re-
quire us to “refine the principles of the local method” in order to take all
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ancestral genes into account, and correctly weight the ancestral syntenies ac-
cording to their phylogenetic signal. This is precisely the contribution of the
new methodology developed in [14], where the weight of a potential ancestral
adjacency (a, b) reflects the maximum number of times a and b can be ad-
jacent in the whole tree, for any setting of ancestral genomes. The method
was described above (in Section 5.2) for the case of evolution without WGDs.
The dynamic programming algorithm used for computing adjacency weight
generalizes to the case of WGDs. As noticed earlier in this section, chaining
adjacencies into CARs is problematic at an ancestral node below a first WGD
node. However, inferring the ancestral genome preceding the first WGD node
is identical to the non-WGD case, as the constructed genome contains only
one copy of each gene. Applying the algorithm in [14] to the data sets of the
eleven yeast genomes considered in Gordon et al., yields very similar results.

7 Genome Aliquoting

Whole genome doubling is not the only process that results in multiple copies
of each chromosome in a genome. Hexaploidy, octoploidy, etc., are conditions
where the genome has been tripled, quadrupled, etc. Warren has generalized
the genome halving problem to one of genome aliquoting [119]:

Given a genome T with p ≥ 2 copies of each gene, distributed in any
manner among the chromosomes, to find the “ancestral” genome, written A⊕
A⊕· · ·⊕A, consisting of p identical parts, i.e., p identical sets of chromosomes
with one copy of each gene in each part, such that the rearrangement distance
d(T,A ⊕ A ⊕ · · · ⊕ A) is minimal. Part of this problem is to find an optimal
labelling as 1, 2, . . . or p of the p copies of each gene, so that all n copies
labelled “1” are in one part of A⊕ A⊕ · · · ⊕ A and all those labelled “2” are
in a separate part, and so on. The genome A represents the ancestral genome
at the moment immediately preceding the polyploidization event giving rise to
A⊕ A⊕ · · · ⊕ A.

Warren provided an efficient algorithm for the solution of genome aliquot-
ing for DCJ [119], though the complexity of this problem has not yet been
established.

8 Conclusions

The extension of genomic comparison theory to allow duplicate genes and gene
families in a genome gives rise to a variety of new combinatorial optimization
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problems. This has set the stage for new algorithmic results, but the difficulty
in solving many of these problems ensures that a great deal of work remains
to be done.

Projects for genome sequencing and analysis routinely encounter the prob-
lems due to duplication and paralogy we have discussed here. The biologists
and bioinformaticians supporting them use many of the techniques we have
discussed in a piecemeal way or develop de novo heuristics to solve the prob-
lems in ways specific to the particular genomes under study. At the same time,
those working in combinatorial optimization methods use small invented prob-
lems, simulated data or the occasional full-scale real data to which they may
have access. It is where these two currents intersect that the most interesting
ideas emerge. More detailed characterization of biological structures and pro-
cesses encourage us to relax the simplifying assumptions that lead to strong
but irrelevant theoretical results, while serious attention to formal critera and
analysis can avoid an unnecessary reliance on heuristics and help understand
the limitations of non-unique reconstructions. Fortunately, this convergence
of disciplines is on the increase.

9 Exercises

Exercise 1: Let G be a genome set, T be a gene tree on G and S be a species
tree for G.

1. Find the reconciliation M(T, S) between the trees T and S of Figure 8
minimizing the loss cost.

11 2 3 54 5 1

T:

1 2 53 4

S:

Figure 8: A gene tree T and a species tree S on G = {1, 2, 3, 4, 5}.

2. As stated in Section 3.3, the reconciliation minimizing the loss cost is
unique, and it is also guaranteed to minimize the duplication cost. By
using the trees of Figure 8, show that the converse is not true. In other
words, find a reconciliation between T and S that minimizes the dupli-
cation cost, but not the loss cost.
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2 3 1 31 1 1 131

T :

Figure 9: A gene tree T on G = {1, 2, 3}.

1 2 3

1 2 3 1’ 2’ 3’

1 2 3

1 2 3 3’ 2’ 1’

Inverted Tandem DuplicationTandem Duplication

Figure 10: A chromosomal segment containing three consecutive genes 1, 2
and 3 evolves into a segment containing 6 consecutive genes 1, 2, 3, 1′, 2′ and
3′, where x′ is the copy of x, by: A Tandem Duplication leading to the gene
order 1, 2, 3, 1′, 2′, 3′; An Inverted Tandem Duplication leading to the gene
order 1, 2, 3,−3′,−2′,−1′.

3. Suppose now that the species tree S is unknown. Let T be a gene tree.
We consider the problem of finding a most parsimonious history of Dupli-
cation/Loss/Speciation explaining T . More precisely, the problem is to
find a reconciliation between T and any species tree S for G minimizing
the duplication cost (the minimum duplication problem) or minimizing
the loss cost (the minimum loss problem).

By using the gene tree of Figure 9, show that there is not always a com-
mon solution to the minimum duplication and minimum loss problem.

Exercise 2: Consider a TAG cluster, represented as an ordered sequence of
n genes, and a gene tree T for these genes. We assume that the TAG cluster
has evolved from a common ancestral gene through tandem duplications and
inverted tandem duplications (see Figure 10). We want to find the set of all
possible most recent events that have led to the observed TAG.

1. Develop an algorithm that finds, in linear time, the set of all possible
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most recent tandem duplication events.

2. Develop an algorithm that finds, in linear time, the set of all possible
most recent inverted tandem duplication events.

Exercise 3: Use the Genome halving (Section 6.1) and Generalized genome
halving (Section 6.2) problems to develop a heuristic for computing the me-
dian of one duplicated genome (descendant from a WGD event) and two non-
duplicated outgroups (case 2., Section 6).
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