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Gene clusters as intersections of powers of paths∗
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Abstract

There are various definitions of a gene cluster determined by two
genomes and methods for finding these clusters. However, there is little
work on characterizing configurations of genes that are eligible to be
a cluster according to a given definition. For example, given a set of
genes in a genome is it always possible to find two genomes such that
their intersection is exactly this cluster?

In one version of this problem, we make use of the graph theory to
reformulated it as follows: Given a graph G, does there exist two θ-
powers of paths GS = (VS , ES) and GT = (VT , ET ), such that GS∩GT

contains G as an induced subgraph? In this work, we show an O(n2)
time algorithm that generates the smallest θ-powers of paths GS and
GT (with respect to θ and the number of vertices n of G), when G a
unit interval graph.

1 Introduction

Due to recent research on genetic mapping, a large amount of information

is available and stored in databases of various research centers in the world.

Processing these data, in order to obtain relevant biological conclusions,

is one of the challenges in Biology. One way to structure these data is

using comparison of genomes, i.e., the search for similarities and differences

between two or more organisms. The central question of this paper proposes
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a problem in this area by asking: given a set of genes in a genome, called

cluster is it always possible to find two genomes such that their intersection

is exactly this cluster? First, we show the modeling presented by Adam et

al. [1] and Sankoff and Xu [7] which will be used in this paper.

A marker is a gene with a known location on a chromosome. Let VX

be the set of n markers in the genome X. These markers are partitioned

among a number of total orders called chromosomes. For markers g and h

in VX on the same chromosome in X, let gh ∈ EX if the number of genes

intervening between g and h in X is less than θ, where θ > 1 is a fixed

neighbourhood parameter. We call GX = (VX , EX) a θ-adjacency graph if

its edges are determined by a neighbourhood parameter θ.

Consider the θ-adjacency graphs GS = (VS , ES) and GT = (VT , ET )

with a non-null set of vertices in common VST = VS ∩ VT . We say that

a subset of V ⊆ VST is a generalized adjacency cluster if it consists of the

vertices of a maximal connected subgraph of GST = (VST , ES ∩ ET ). We

call G = GST [V ] the subgraph induced by set V .

Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set

E(G), such that |V (G)| = n. Let v, v̄ ∈ V (G). The distance between

vertices v and v̄, denoted by dG(v, v̄), is the number of edges in a shortest

path between v and v̄ in G. A path between two vertices v0 and vt of the

graph G is a sequence of vertices v1, v2, . . . , vt such that vivi+1 is an edge of

G, 1 6 i 6 t−1. Let Pn be a graph which is a path with n vertices. A θ-power

of a path Pnθ , denoted by P θnθ , θ > 0, is graph such that: V (P θnθ) = V (Pnθ)

and E(P θnθ) = {vv̄ : dPnθ (v, v̄) 6 θ with v, v̄ ∈ V (P θnθ)}. For the benefit of

the reader, we denote the power of a path P θnθ by P θ. The definition of a

chromosome with nθ markers in a θ-adjacency graph is similar to a power

of a path P θnθ . Now, the central question of this work can be reformulated

as follows:

Question 1. [2, 5] Given a connected graph G, does there exist two θ-powers

of paths GS and GT , whose intersection contains G as an induced subgraph?

If the answer is yes, we are also interested in finding the minimum value
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of power θ and number vertices nθ for these two θ-powers of a path.

In this work, we consider the case when G is an unit interval graph. We

say that G is an unit interval graph if there exists a family I of intervals

(a, b) on the real line such that: each v ∈ V (G) can be put in a one-to-one

correspondence with (av, bv) ∈ I; the intervals in I are of same length; and

vv̄ is a edge of E(G) if, and only if, (av, bv)∩ (av̄, bv̄) 6= ∅. There exist linear-

time recognition algorithms for unit interval graphs, for example Figueiredo

et al. [4] and Corneil et al. [3].

Brandstädt et al. [2] and Lin et al. [5] proved independently the following

structural property:

Theorem 1. [2, 5] A graph G is an induced subgraph of a power of a path

if, and only if, G is an unit interval graph.

Thus, given an unit interval graph G, there exists a power of a path P θnθ
that contains G as an induced subgraph. But the proofs of the structural

characterization given by Theorem 1 [2, 5] does not lead to an algorithm

that constructs GS and GT for Question 1.

In this paper, we present an O(n2) time algorithm that generates, from a

connected unit interval graph G, the smallest θ-powers of paths GS and GT

(with respect to θ and to number of the vertices n of G) whose intersection

contains G as an induced subgraph. The proofs will be omitted in this

extended abstract due to space.

2 The algorithm

Our result is based on the ordering of the vertex set of G given by

Algorithm Recognize [3], which satisfies the property proved by Roberts in

[6]: “A graph G is an unit interval graph if and only if there is an order

< on vertices such that: for all vertices v, the closed neighborhood of v is

a set of consecutive vertices with respect to the order <.” Since all powers

of paths are unit interval graphs, we can insert the vertices of V (G), in the

vertex set of a power of a path P θnθ until this power of a path contains G as
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an induced subgraph.

This construction is done as follows. First, we take v1 < v2 < . . . < vn

an ordering of V (G) given by Algorithm Recognize [3]. We consider θ0 as

the number of vertices of the maximal clique, that contains v1, minus one;

and we insert the vertices of this clique in P θ0 . The algorithm constructs

a sequence of power of a paths P θ0 ⊂ P θ1 ⊂ . . . ⊂ P θl−1 ⊂ P θl such that

θi = θi−1 + 1.

Let v be the first vertex non-adjacent to v1 in the order on V (G). If v

is adjacent to v2, the algorithm must insert v in the vertex of P θ0 that is

at distance θ0 + 1 from vertex v1 in P θ0 . Similarly, if v is not adjacent to

vt, but is adjacent to vt+1, the algorithm must insert v in the vertex of P θ0

that is at a distance θ0 + 1 from vertex vt in P θ0 . This is done by inserting

t − 1 vertices between the vertex of largest index adjacent to v1 and v in

P θ0 . Now, suppose that there exists at least two vertices v, v̄ that are not

adjacent to v1 and adjacent to v2. Let v̄ be the second vertex of this set. In

order to minimize the number of vertices of P θ0 , vertex v̄ must be a vertex

of P θ0 at distance θ0 + 2 of vertex v1 in P θ0 . Then, the algorithm must call

Procedure SHIFT to increase θ0 to θ1 := θ0 + 1 because of the edge v̄v2.

On the other hand, this procedure adds several edges in P θ0 which are not

in E(G). Thus, Procedure SHIFT adjusts the power of a path P θ0 for the

new θ1, by inserting vertices in P θ0 in order to preserve the adjacencies and

non-adjacencies of the vertices of G and generates a new P θ1 . Algorithm

proceeds until all vertices of V (G) are included in P θnθ , a smallest power of

a path with respect to θ and nθ.

Before describing the algorithm, we shall give some notations. Given

an ordering of V (G) returned by Algorithm Recognize [3], then orderG(v)

is the position of vertex v in the ordering of the vertex set of G; ξG(v) =

max{orderG(v) : v̄ ∈NG[v]} and ηG(v) = min{orderG(v̄) : v̄ ∈NG[v]}. Let

v ∈ V (G) and v ∈ V (P θ). We refer to orderP θ(v) as the position of vertex

v in the ordering of the vertex set of P θ, i.e., orderP θ(v) = i, if ui = v in

P θ. Given u ∈ V (P θ), we denote ξP θ(u) = max{orderP θ(ū) : ū ∈NP θ [u]}
and ηP θ(u) = min{orderP θ(ū) : ū∈NP θ [u]}.
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Next, we present Algorithm CPP and Procedure SHIFT.

Algorithm. CONSTRUCTING POWER OF PATH (CPP)

• Input: a connected unit interval graph G and an ordering of V (G),

v1 < . . . < vn, given by Algorithm Recognize [3].

• Output: a smallest power of a path P θnθ , with respect to θ and to number

of the vertices nθ, which contains G as an induced subgraph.

1. θ := ξG(v1)− 1.

2. P θ := (u1, u2, . . . , uθ(n−1), uθ(n−1)+1) null-vector.

3. For j := 1 to ξG(v1) do

uj := vj.

4. For i := 1 to ηG(vn)− 1 do

For j := 1 to ξG(vi+1)− ξG(vi) do

uorder
Pθ

(vi)+θ+j := vξG(vi)+j.

If |orderP θ(vξG(vi)+j)−orderP θ(vi+1)| > θ then

SHIFT(P θ[u1, u2, . . . , uorder
Pθ−1 (vi)+θ+j ]).

5. Return P θ := (u1, u2, . . . , uorder
Pθ

(vn)).
�

The following procedure is called in Step 4 of algorithm CPP, and it

receives as input a smallest power of a path P θ that contains G[v1, . . . , vl−1],

ξG(v1) + 1 6 l 6 n as an induced subgraph in P θ. This power of a path also

contains the last vertex vl inserted by Algorithm CPP. Vertex vl raises the

Procedure SHIFT because it is not adjacent to some vertex vl−t in P θ, but

vl−tvl ∈ E(G).
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Procedure. SHIFT

• Input: a smallest power of a path P θ that contains G[v1, . . . , vl−1] as

an induced subgraph.

• Output: a smallest power of a path P θ+1 that contains G[v1, . . . , vl]

as an induced subgraph.

1. θ := θ + 1.

2. P θ := (w1, w2, . . . , wθ(l−1)+1) null-vector.

3. k := max{orderP θ−1(v) :

orderP θ−1(v) < ηP θ−1(unθ−1
)−1, v∈V (G)}

s := min{t>1 : t ≡k mod θ}.

4. For j := 1 to s do

wj := uj.

5. For j := s+ 1 to k + 1 do

If j ≡ (s+ 1) mod θ

then worder
Pθ

(uj−1)+2 := uj;

else worder
Pθ

(uj−1)+1 := uj.

6. For j := k + 2 to nθ−1 do

worder
Pθ

(uj−1)+1 := uj.

7. Return P θ.
�

Algorithm CPP returns P θnθ , the smallest power of a path (with respect

to θ and nθ) that contains G as an unit interval graph. We construct the two

powers of paths, GT = (VT , ET ) and GS = (VS , ES), form P θnθ , as follows.

First, VT = VS = V (P θnθ). Then, vertices VT , which are not in V , receive

different labels from vertices in V (P θnθ).

Next, we present a sketch of the proofs of correctness of the Procedure

SHIFT and Algorithm CPP, respectively.
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Lemma 1. Let P θ be a smallest power of a path that contains Gl−1 =

G[v1, . . . , vl−1] as an induced subgraph, with respect to order v1 < . . . <

vl−1. Let vl ∈ V (G) be the next vertex inserted in P θ and vl−t−1vl 6∈
E(G), vl−tvl ∈ E(G) and dPnθ (vl−t, vl) = θ + 1. Then, the output of

the Procedure SHIFT P θ+1 is a smallest power of a path that contains

Gl = G[v1, . . . , vl−1, vl] as an induced subgraph, with respect to order v1 <

. . . < vl−1 < vl.

Sketch of the proof. We observe that since the clique formed by the vertices

{vl−t, . . . , vl} must be preserved in P θ, the value of θ must be increased

by one unit. Then, to preserve the non-adjacencies of vertices of Gl in

the new P θ, the procedure must insert a vertex between the largest ver-

tex of V (Gl) that is non-adjacent to vl in P θ and its consecutive vertex

in Pnθ , i.e., between uorder
Pθ

(vl−t−1) and uorder
Pθ

(vl−t−1)+1; and the proce-

dure must insert a vertex each θ + 1 vertices numbered in descending order

from the uorder
Pθ

(vl−t−1) in P θ. This assures P θ[u1, . . . , uorder
Pθ

(vl−t−1)] is in-

duced subgraph of P θ+1. Since Gl[v1, . . . , vξGl (vl−t−1)] is induced subgraph of

P θ[u1, . . . , uorder
Pθ

(vl−t−1)], by transitivity, Gl[v1, . . . , vξGl (vl−t−1)] is induced

subgraph of P θ+1. As the clique formed by the vertices {vl−t, . . . , vl} was

preserved in P θ+1 and the vertex set {uorder
Pθ

(vl−t−1)+1, . . . , uorder
Pθ

(vl−t)−1}
contains no vertices of V (Gl), we have Gl[vl−t−1, . . . , vl] is induced subgraph

of P θ+1. Thus, Gl is induced subgraph of P θ+1.

This insertion of vertices in P θ is minimal. In fact, given v ∈ V (Gl)

the first vertex non-adjacent to v in P θ, with respect ordering of V (P θ),

is the first vertex non-adjacent to v in P θ+1, then these vertices cannot be

omitted.

Finally, the correctness of the Algorithm CPP is given by Theorem 2.

Theorem 2. Let G be an unit interval graph. Algorithm CPP returns a

smallest power of a path P θnθ with respect to nθ and θ, which contains G as

an induced subgraph.

Sketch of the proof. Using similar techniques of Lemma 1, we prove that the

output of Algorithm CPP is a smallest power of a path which contains G as
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an induced subgraph, with respect the ordering of V (G) given by [3]. On the

other hand, if there exists a power of a path P σ such that P σ is a smallest

power of a path which contains G as an induced subgraph, then σ 6 θ and

nσ 6 nθ. We prove that the ordering of V (G) induced by the ordering of

P σ is equal to the ordering of V (G) returned by Algorithm Recognize, up

to of indistinguishable vertices; in this case, we can change the positions

of the indistinguishable vertices belonging to V (G) in P σ. Changing these

positions, the ordering of V (G) induced by the ordering of P σ is equal to the

ordering of V (G) returned by Algorithm Recognize. Since P θ is a smallest

power of a path that contains G as an induced subgraph with respect this

ordering, we have θ 6 σ and nθ 6 nσ. Then, σ = θ and nσ = nθ

The Algorithm CPP analyzes each vertex of G in the ordering returned

by Algorithm Recognize [3] a single time. In the worst case, the algorithm

calls Procedure SHIFT for each vertex vl ∈ V (G) only once. Since, for each

vertex vl, the Procedure SHIFT passes by the set of vertices of Gl at most

once, the complexity of Algorithm CPP is O(n2).

3 Conclusion

In this work, we developed an O(n2) time algorithm that generates, from

a connected unit interval graph G, the smallest θ-powers of paths GS and GT

(with respect to θ and to number of the vertices n of G) whose intersection

contains G as an induced subgraph.

We remark that θ can be greater than or equal to the size of a maximum

clique of the graph G, denoted by ω(G). Figure 1 shows an example where

G has ω(G) = 4 and the Algorithm CPP returns θ = 5, but the difference

between θ and ω(G) can be greater than 1.

As future work, we intend to investigate other classes of graphs. An exa-

mple is graph C4 = (V,E), with V = {v1, v2, v3, v4} and E = {v1v2, v1v3,

v2v4, v3v4}, which is not an unit interval graph. In this case, we have GS

and GT , with VS = VT = {v1, v2, v3, v4}, ES = {v1v2, v1v3, v2v3, v2v4, v3v4}
and ET ={v1v2, v1v3, v1v4, v2v4, v3v4}.
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G

P 5
21

Figure 1: Graph G with n = 10 and ω(G) = 4 and its corresponding output
returned by Algorithm CPP: P θnθ with nθ = 21 and θ = 5.
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